scholarly journals Comparison of effects of transcranial magnetic stimulation on primary motor cortex and supplementary motor area in motor skill learning (randomized, cross over study)

Author(s):  
Yong Kyun Kim ◽  
Sung Hun Shin
2014 ◽  
Vol 112 (1) ◽  
pp. 156-164 ◽  
Author(s):  
James P. Coxon ◽  
Nicola M. Peat ◽  
Winston D. Byblow

Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability and inhibition thought to involve synaptic and extrasynaptic γ-aminobutyric acid (GABA). Short intracortical inhibition (SICI) was assessed using 1- and 2.5-ms interstimulus intervals (ISIs). Participants learned a novel, sequential pinch-grip task on a computer in either a repetitive or interleaved practice structure. Both practice structures showed equivalent levels of motor performance at the end of acquisition and at retention 1 wk later. There was a novel task-related modulation of 1-ms SICI. Repetitive practice elicited a greater reduction of 1- and 2.5-ms SICI, i.e., disinhibition, between rest and task acquisition, compared with interleaved practice. These novel findings support the use of a repetitive practice structure for motor learning because the associated effects within M1 have relevance for motor rehabilitation.


2015 ◽  
Vol 8 (6) ◽  
pp. 1195-1204 ◽  
Author(s):  
Masato Hirano ◽  
Shinji Kubota ◽  
Shigeo Tanabe ◽  
Yoshiki Koizume ◽  
Kozo Funase

2010 ◽  
Vol 108 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Mathieu Raux ◽  
Haiqun Xie ◽  
Thomas Similowski ◽  
Lisa Koski

Inspiratory loading in awake humans is associated with electroencephalographic signs of supplementary motor area (SMA) activation. To provide evidence for a functional connection between SMA and the diaphragm representation in the primary motor cortex (M1DIA), we tested the hypothesis that modulating SMA activity using repetitive transcranial magnetic stimulation (rTMS) would alter M1DIA excitability. Amplitude and latency of diaphragm motor evoked potentials (MEPDIA), evoked through single pulse M1DIA stimulation, before and up to 16 min after SMA stimulation, were taken as indicators of M1DIA excitability. MEPs from the first dorsal interosseous muscle (FDI, MEPFDI) served as a control. Four SMA conditioning sessions were performed in random order at 1-wk intervals. Two aimed at increasing SMA activity (5 and 10 Hz, both at 110% of FDI active motor threshold; referred to as 5Hz and 10Hz, respectively), and two aimed at decreasing it (1 Hz either at 110% of FDI active or resting motor threshold, referred to as aMT or rMT, respectively). The 5Hz protocol increased MEPDIA and MEPFDI amplitudes with a maximum 11–16 min poststimulation ( P = 0.04 and P = 0.02, respectively). The 10Hz protocol increased MEPFDI amplitude with a similar time course ( P = 0.03) but did not increase MEPDIA amplitude ( P = 0.32). Both aMT and rMT failed to decrease MEPDIA or MEPFDI amplitudes ( P = 0.23 and P = 0.90, respectively, for diaphragm and P = 0.48 and P = 0.14 for FDI). MEPDIA and MEPFDI latencies were unaffected by rTMS. These results demonstrate that 5-Hz rTMS over the SMA can increase the excitability of M1DIA. These observations are consistent with the hypothesis of a functional connection between SMA and M1DIA.


2011 ◽  
Vol 31 (7) ◽  
pp. 2481-2487 ◽  
Author(s):  
J. A. Hosp ◽  
A. Pekanovic ◽  
M. S. Rioult-Pedotti ◽  
A. R. Luft

Sign in / Sign up

Export Citation Format

Share Document