scholarly journals Sevoflurane Promotes Neurodegeneration Through Inflammasome Formation in APP/PS1 Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Guohua Li ◽  
Yu Wang ◽  
Fang Cao ◽  
Dawei Wang ◽  
Limin Zhou ◽  
...  

Sevoflurane (SEVO) is a highly fluorinated methyl isopropyl ether used as an inhalational anesthetic for general anesthesia. Previous studies have shown that SEVO may induce impaired memory and recognition ability and may be associated with neurodegenerative disease, e.g., Alzheimer’s disease (AD). However, the underlying mechanism remains unknown. Here, we used a mouse AD model, APP/PS1, to study the effects of SEVO on neurodegeneration occurring in AD. We found that SEVO exposure significantly impaired the spatial reference memory, sensorimotor, and cognitive function of the mice. Mechanistically, we found that SEVO induced formation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and its downstream caspase 1-mediated production of IL-1β and IL-18, which subsequently deactivated brain-derived neurotrophic factor (BDNF) to promote neurodegeneration. Together, these data suggest that NLRP3 inflammasome is essential for SEVO-induced AD.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yanhua Zhao ◽  
Lili Huang ◽  
Huan Xu ◽  
Guangxi Wu ◽  
Mengyi Zhu ◽  
...  

Postoperative cognitive dysfunction (POCD) increases morbidity and mortality after surgery. But the underlying mechanism is not clear yet. While age is now accepted as the top one risk factor for POCD, results from studies investigating postoperative cognitive functions in adults have been controversial, and data about the very young adult individuals are lacking. The present study investigated the spatial reference memory, IL-1β, IL-6, and microglia activation changes in the hippocampus in 2-month-old mice after anesthesia and surgery. We found that hippocampal IL-1βand IL-6 increased at 6 hours after surgery. Microglia were profoundly activated in the hippocampus 6 to 24 hours after surgery. However, no significant behavior changes were found in these mice. These results indicate that although anesthesia and surgery led to neuroinflammation, the latter was insufficient to impair the spatial reference memory of young adult mice.


Hippocampus ◽  
2004 ◽  
Vol 14 (2) ◽  
pp. 216-223 ◽  
Author(s):  
W.B. Schmitt ◽  
R.M.J. Deacon ◽  
D. Reisel ◽  
R. Sprengel ◽  
P.H. Seeburg ◽  
...  

2019 ◽  
Vol 1704 ◽  
pp. 16-25 ◽  
Author(s):  
Motahareh Rouhi Ardeshiri ◽  
Narges Hosseinmardi ◽  
Esmaeil Akbari

2019 ◽  
Author(s):  
Zhanqiang Zhao ◽  
Bing Li ◽  
Yuqing Wu ◽  
Xujun Chen ◽  
Yan Guo ◽  
...  

Abstract Background Ketamine has been reported to cause neonatal neurotoxicity in a variety of developing animal models. Various studies have been conducted to study the mechanism of neurotoxicity for general anesthetic use during the neonatal period. Previous experiments have suggested that developmentally generated granule neurons in the hippocampus dentate gyrus (DG) supported hippocampus-dependent memory. Therefore, this study aimed to investigate whether ketamine affects the functional integration of developmentally generated granule neurons in the DG. For this purpose , the postnatal day 7 (PND-7) Sprague-Dawley (SD) rats were divided into the control group and the ketamine group (rats who received 4 injections of 40 mg/kg ketamine at 1 h intervals). To label dividing cells, BrdU was administered for three consecutive days after the ketamine explore; NeuN+/BrdU+ cells were observed by using immunofluorescence. To evaluate the developmentally generated granule neurons that support hippocampus-dependent memory, spatial reference memory was tested by using Morris Water Maze at 3 months old, after which the immunofluorescence was used to detect c-Fos expression in the NeuN + /BrdU + cells. The expression of caspase-3 was measured by western blot to detect the apoptosis in the hippocampal DG. Results The present results showed that the neonatal ketamine exposure did not influence the survival rate of developmentally generated granule neurons at 2 and 3 months old, but ketamine interfered with the integration of these neurons into the hippocampal DG neural circuits and caused a deficit in hippocampal-dependent spatial reference memory tasks. Conclusions In summary, these findings may promote more studies to investigate the neurotoxicity of ketamine in the developing brain.


Sign in / Sign up

Export Citation Format

Share Document