scholarly journals Porphyromonas gingivalis-Induced Neuroinflammation in Alzheimer’s Disease

2021 ◽  
Vol 15 ◽  
Author(s):  
Ingar Olsen

“Chronic” periodontitis and its keystone pathogen Porphyromonas gingivalis have repeatedly been associated with Alzheimer’s disease (AD). Pathological hallmarks in AD are brain accumulations of amyloid-beta and neurofibrillary tangles consisting of aggregated and hyperphosphorylated tau. In addition, neuroinflammation induced by P. gingivalis has increasingly been recognized as a factor in the pathogenesis of AD. The present mini-review discusses possible mechanisms for the induction of neuroinflammation by P. gingivalis in AD, involving factors such as pro-inflammatory mediators, amyloid-beta, tau, microglia, cathepsin B, and protein kinase R. Inflammagens of P. gingivalis such as lipopolysaccharide and gingipains are also discussed.

2015 ◽  
Vol 11 (7S_Part_16) ◽  
pp. P767-P768 ◽  
Author(s):  
Sungeun Kim ◽  
Kwangsik Nho ◽  
Shannon L. Risacher ◽  
Li Shen ◽  
Leslie M. Shaw ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
John D Arena ◽  
Victoria E Johnson ◽  
Edward B Lee ◽  
Garrett S Gibbons ◽  
Douglas H Smith ◽  
...  

Abstract Current diagnostic criteria for the neuropathological evaluation of the traumatic brain injury-associated neurodegeneration, chronic traumatic encephalopathy, define the pathognomonic lesion as hyperphosphorylated tau-immunoreactive neuronal and astroglial profiles in a patchy cortical distribution, clustered around small vessels and showing preferential localization to the depths of sulci. However, despite adoption into diagnostic criteria, there has been no formal assessment of the cortical distribution of the specific cellular components defining chronic traumatic encephalopathy neuropathologic change. To address this, we performed comprehensive mapping of hyperphosphorylated tau-immunoreactive neurofibrillary tangles and thorn-shaped astrocytes contributing to chronic traumatic encephalopathy neuropathologic change. From the Glasgow Traumatic Brain Injury Archive and the University of Pennsylvania Center for Neurodegenerative Disease Research Brain Bank, material was selected from patients with known chronic traumatic encephalopathy neuropathologic change, either following exposure to repetitive mild (athletes n = 17; non-athletes n = 1) or to single moderate or severe traumatic brain injury (n = 4), together with material from patients with previously confirmed Alzheimer’s disease neuropathologic changes (n = 6) and no known exposure to traumatic brain injury. Representative sections were stained for hyperphosphorylated or Alzheimer’s disease conformation-selective tau, after which stereotypical neurofibrillary tangles and thorn-shaped astrocytes were identified and mapped. Thorn-shaped astrocytes in chronic traumatic encephalopathy neuropathologic change were preferentially distributed towards sulcal depths [sulcal depth to gyral crest ratio of thorn-shaped astrocytes 12.84 ± 15.47 (mean ± standard deviation)], with this pathology more evident in material from patients with a history of survival from non-sport injury than those exposed to sport-associated traumatic brain injury (P = 0.009). In contrast, neurofibrillary tangles in chronic traumatic encephalopathy neuropathologic change showed a more uniform distribution across the cortex in sections stained for either hyperphosphorylated (sulcal depth to gyral crest ratio of neurofibrillary tangles 1.40 ± 0.74) or Alzheimer’s disease conformation tau (sulcal depth to gyral crest ratio 1.64 ± 1.05), which was comparable to that seen in material from patients with known Alzheimer’s disease neuropathologic changes (P = 0.82 and P = 0.91, respectively). Our data demonstrate that in chronic traumatic encephalopathy neuropathologic change the astroglial component alone shows preferential distribution to the depths of cortical sulci. In contrast, the neuronal pathology of chronic traumatic encephalopathy neuropathologic change is distributed more uniformly from gyral crest to sulcal depth and echoes that of Alzheimer’s disease. These observations provide new insight into the neuropathological features of chronic traumatic encephalopathy that distinguish it from other tau pathologies and suggest that current diagnostic criteria should perhaps be reviewed and refined.


Neuron ◽  
2008 ◽  
Vol 60 (2) ◽  
pp. 247-257 ◽  
Author(s):  
Binggui Sun ◽  
Yungui Zhou ◽  
Brian Halabisky ◽  
Iris Lo ◽  
Seo-Hyun Cho ◽  
...  

Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document