scholarly journals The Effects of Gender, Functional Condition, and ADL on Pressure Pain Threshold in Stroke Patients

2021 ◽  
Vol 15 ◽  
Author(s):  
Yong-Hui Zhang ◽  
Yu-Chen Wang ◽  
Gong-Wei Hu ◽  
Xiao-Qin Ding ◽  
Xiao-Hua Shen ◽  
...  

BackgroundSomatosensory impairments and pain are common symptoms following stroke. However, the condition of perception and pain threshold for pressure stimuli and the factors that can influence this in individuals with stroke are still unclear. This study aimed to investigate the gender differences in pressure pain threshold (PPT) and positive somatosensory signs for pressure stimuli, and explore the effects of joint pain, motor function, and activities of daily living (ADL) on pain threshold in post-stroke patients.DesignA cross-sectional study.MethodsA total of 60 participants with stroke were recruited, and their pain condition, motor functions, and ADL were evaluated by the Fugl-Meyer assessment of joint pain scale, motor function scale, and Barthel index, respectively. PPTs in eight tested points at the affected and unaffected sides were assessed.ResultsSignificant differences in PPTs were found between male and female patients in all measured muscles (p < 0.05). Positive somatosensory signs for pressure stimuli, including hypoalgesia and hyperalgesia, were frequently found at the affected side, particularly in the extremity muscles, but such signs were not significantly influenced by gender (p > 0.05). More equal PPTs between both sides and relatively lower PPTs at the affected side in the trunk and medial gastrocnemius muscles (p < 0.05) were observed in patients with less pain, better motor functions, and ADL.ConclusionGender differences widely exist in post-stroke survivors either at the affected or unaffected side, which are multifactorial. Sensory loss and central and/or peripheral sensitization, such as hypoalgesia and hyperalgesia for pressure stimuli, caused by a brain lesion are common signs in male and female stroke patients. Moreover, patients who are in a better condition show a more symmetrical pain sensitivity between both sides in the trunk and in female lower extremities, indicating the bidirectional improvement of somatosensory abnormalities caused by a possible neural plasticity.

2021 ◽  
pp. svn-2020-000834
Author(s):  
Koteswara Rao Nalamolu ◽  
Bharath Chelluboina ◽  
Casimir A Fornal ◽  
Siva Reddy Challa ◽  
David M Pinson ◽  
...  

Background and purposeThe therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury.MethodsTransient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke.ResultsThe infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males).ConclusionsDespite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


2015 ◽  
Vol 37 (5) ◽  
pp. 434-440 ◽  
Author(s):  
Yanna Tong ◽  
Brian Forreider ◽  
Xinting Sun ◽  
Xiaokun Geng ◽  
Weidong Zhang ◽  
...  

Cephalalgia ◽  
2011 ◽  
Vol 31 (8) ◽  
pp. 953-963 ◽  
Author(s):  
Nicholas H L Chua ◽  
Hans A van Suijlekom ◽  
Kris C Vissers ◽  
Lars Arendt-Nielsen ◽  
Oliver H Wilder-Smith

Background: It is not known why some patients with underlying chronic nociceptive sources in the neck develop cervicogenic headache (CEH) and why others do not. This quantitative sensory testing (QST) study systematically explores the differences in sensory pain processing in 17 CEH patients with underlying chronic cervical zygapophysial joint pain compared to 10 patients with chronic cervical zygapophysial joint pain but without CEH. Methods: The QST protocol comprises pressure pain threshold testing, thermal detection threshold testing, electrical pain threshold testing and measurement of descending inhibitory modulation using the conditioned pain modulation (CPM) paradigm. Results: The main difference between patients with or without CEH was the lateralization of pressure hyperalgesia to the painful side of the head of CEH patients, accompanied by cold as well as warm relative hyperesthesia on the painful side of the head and neck. Discussion: From this hypothesis-generating study, our results suggest that rostral neuraxial spread of central sensitization, probably to the trigeminal spinal nucleus, plays a major role in the development of CEH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Dionísio ◽  
Rita Gouveia ◽  
João Castelhano ◽  
Isabel Catarina Duarte ◽  
Gustavo C. Santo ◽  
...  

Objectives: Transcranial magnetic stimulation, in particular continuous theta burst (cTBS), has been proposed for stroke rehabilitation, based on the concept that inhibition of the healthy hemisphere helps promote the recovery of the lesioned one. We aimed to study its effects on cortical excitability, oscillatory patterns, and motor function, the main aim being to identify potentially beneficial neurophysiological effects.Materials and Methods: We applied randomized real or placebo stimulation over the unaffected primary motor cortex of 10 subacute (7 ± 3 days) post-stroke patients. Neurophysiological measurements were performed using electroencephalography and electromyography. Motor function was assessed with the Wolf Motor Function Test. We performed a repeated measure study with the recordings taken pre-, post-cTBS, and at 3 months' follow-up.Results: We investigated changes in motor rhythms during arm elevation and thumb opposition tasks and found significant changes in beta power of the affected thumb's opposition, specifically after real cTBS. Our results are consistent with an excitatory response (increase in event-related desynchronization) in the sensorimotor cortical areas of the affected hemisphere, after stimulation. Neither peak-to-peak amplitude of motor-evoked potentials nor motor performance were significantly altered.Conclusions: Consistently with the theoretical prediction, this contralateral inhibitory stimulation paradigm changes neurophysiology, leading to a significant excitatory impact on the cortical oscillatory patterns of the contralateral hemisphere. These proof-of-concept results provide evidence for the potential role of continuous TBS in the neurorehabilitation of post-stroke patients. We suggest that these changes in ERS/ERD patterns should be further explored in future phase IIb/phase III clinical trials, in larger samples of poststroke patients.


2019 ◽  
Vol 9 (2) ◽  
pp. 57-67
Author(s):  
Jelena Nikolić ◽  
Fadilj Eminović ◽  
Ljiljana Šimpraga ◽  
Angelka Pešterac-Kujundžić

Stroke is a clinical syndrome, and one of the leading causes of death and disability, occurring under the influence of a large number of risk factors. The symptoms of a stroke are in correlation with the size, time and location of the lesion. Rehabilitation, which involves the application of conventional and supplementary methods, relates to the assessment of the ability, the level of damage of the affected functions, and an adequately designed rehabilitation program. The use of dance, as a rehabilitation procedure in post-stroke patients, requires listening and active participation of an individual with a specific motor reaction to the stimulus. The primary aim of this article is to demonstrate the importance and effects of the application of dance in the rehabilitation process in post-stroke patients, with a special emphasis on the process of improving motor skills and functions. In accordance with the set criteria and purpose of study, scientific research papers were collected and analysed from the PubMed/MEDLINE, Science Direct and Oxford Academic databases, all published in the period between 2010 and 2019, and all indicating the importance of the application of dance when treating post-stroke conditions. The obtained results suggest that dance, which is basically a sports-recreational activity, when applied for therapeutic purposes in persons after stroke, contributes to the development and recovery of motor abilities, balance, mobility, endurance, coordination, motor skills, stance, walking and precision. Also, dancing is of great importance for the improvement of the functioning of the whole organism, which directly or indirectly affects the recovery of motor functions and the overall welfare of an individual.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mengjiao Hu ◽  
Hsiao-Ju Cheng ◽  
Fang Ji ◽  
Joanna Su Xian Chong ◽  
Zhongkang Lu ◽  
...  

Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been proven effective in post-stroke motor function enhancement, yet whether the combination of MI-BCI and tDCS may further benefit the rehabilitation of motor functions remains unknown. This study investigated brain functional activity and connectivity changes after a 2 week MI-BCI and tDCS combined intervention in 19 chronic subcortical stroke patients. Patients were randomized into MI-BCI with tDCS group and MI-BCI only group who underwent 10 sessions of 20 min real or sham tDCS followed by 1 h MI-BCI training with robotic feedback. We derived amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) from resting-state functional magnetic resonance imaging (fMRI) data pre- and post-intervention. At baseline, stroke patients had lower ALFF in the ipsilesional somatomotor network (SMN), lower ReHo in the contralesional insula, and higher ALFF/Reho in the bilateral posterior default mode network (DMN) compared to age-matched healthy controls. After the intervention, the MI-BCI only group showed increased ALFF in contralesional SMN and decreased ALFF/Reho in the posterior DMN. In contrast, no post-intervention changes were detected in the MI-BCI + tDCS group. Furthermore, higher increases in ALFF/ReHo/FC measures were related to better motor function recovery (measured by the Fugl-Meyer Assessment scores) in the MI-BCI group while the opposite association was detected in the MI-BCI + tDCS group. Taken together, our findings suggest that brain functional re-normalization and network-specific compensation were found in the MI-BCI only group but not in the MI-BCI + tDCS group although both groups gained significant motor function improvement post-intervention with no group difference. MI-BCI and tDCS may exert differential or even opposing impact on brain functional reorganization during post-stroke motor rehabilitation; therefore, the integration of the two strategies requires further refinement to improve efficacy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document