scholarly journals Altered Variability and Concordance of Dynamic Resting-State fMRI Indices in Patients With Attention Deficit Hyperactivity Disorder

2021 ◽  
Vol 15 ◽  
Author(s):  
Feiling Lou ◽  
Jiejie Tao ◽  
Ronghui Zhou ◽  
Shuangli Chen ◽  
Andan Qian ◽  
...  

Objective: Attention deficit hyperactivity disorder (ADHD) is a commonly diagnosed neuropsychiatric disorder in children, which is characterized by inattention, hyperactivity and impulsivity. Using resting-state functional magnetic resonance imaging (R-fMRI), the alterations of static and dynamic characteristics of intrinsic brain activity have been identified in patients with ADHD. Yet, it remains unclear whether the concordance among indices of dynamic R-fMRI is altered in ADHD.Methods: R-fMRI scans obtained from 50 patients with ADHD and 28 healthy controls (HC) were used for the current study. We calculated the regional dynamic changes in brain activity indices using the sliding-window method and compared the differences in variability of these indices between ADHD patients and HCs. Further, the concordance among these dynamic indices was calculated and compared. Finally, the relationship between variability/concordance of these indices and ADHD-relevant clinical test scores was investigated.Results: Patients with ADHD showed decreased variability of dynamic amplitude of low-frequency fluctuation (dALFF) in the left middle frontal gyrus and increased one in right middle occipital gyrus, as compared with the HCs. Besides, ADHD patients showed decreased voxel-wise concordance in the left middle frontal gyrus. Further, lower voxel-wise concordance in ADHD’s left middle frontal gyrus was associated with more non-perseverative errors in Wisconsin Card Sorting Test, which reflects worse cognitive control.Conclusion: Our findings suggest that variability and concordance in dynamic brain activity may serve as biomarkers for the diagnosis of ADHD. Further, the decreased voxel-wise concordance is associated with deficit in cognitive control in ADHD patients.

2015 ◽  
Vol 29 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Ching-Wen Huang ◽  
Chung-Ju Huang ◽  
Chiao-Ling Hung ◽  
Chia-Hao Shih ◽  
Tsung-Min Hung

Children with attention deficit hyperactivity disorder (ADHD) are characterized by a deviant pattern of brain oscillations during resting state, particularly elevated theta power and increased theta/alpha and theta/beta ratios that are related to cognitive functioning. Physical fitness has been found beneficial to cognitive performance in a wide age population. The purpose of the present study was to investigate the relationship between physical fitness and resting-state electroencephalographic (EEG) oscillations in children with ADHD. EEG was recorded during eyes-open resting for 28 children (23 boys and 5 girls, 8.66 ± 1.10 years) with ADHD, and a battery of physical fitness assessments including flexibility, muscular endurance, power, and agility tests were administered. The results indicated that ADHD children with higher power fitness exhibited a smaller theta/alpha ratio than those with lower power fitness. These findings suggest that power fitness may be associated with improved attentional self-control in children with ADHD.


2019 ◽  
pp. 1-11
Author(s):  
Valentino Antonio Pironti ◽  
Deniz Vatansever ◽  
Barbara Jacquelyn Sahakian

Abstract Background Attention-deficit/hyperactivity disorder (ADHD) is a developmental condition that often persists into adulthood with extensive negative consequences on quality of life. Despite emerging evidence indicating the genetic basis of ADHD, investigations into the familial expression of latent neurocognitive traits remain limited. Methods In a group of adult ADHD probands (n = 20), their unaffected first-degree relatives (n = 20) and typically developing control participants (n = 20), we assessed endophenotypic alterations in the default mode network (DMN) connectivity during resting-state functional magnetic resonance imaging in relation to cognitive performance and clinical symptoms. In an external validation step, we also examined the dimensional nature of this neurocognitive trait in a sample of unrelated healthy young adults (n = 100) from the Human Connectome Project (HCP). Results The results illustrated reduced anti-correlations between the posterior cingulate cortex/precuneus and right middle frontal gyrus that was shared between adult ADHD probands and their first-degree relatives, but not with healthy controls. The observed connectivity alterations were linked to higher ADHD symptoms that was mediated by performance in a sustained attention task. Moreover, this brain-based neurocognitive trait dimensionally explained ADHD symptom variability in the HCP sample. Conclusions Alterations in the default mode connectivity may represent a dimensional endophenotype of ADHD, hence a significant aspect of the neuropathophysiology of this disorder. As such, brain network organisation can potentially be employed as an important neurocognitive trait to enhance statistical power of genetic studies in ADHD and as a surrogate efficacy endpoint in the development of novel pharmaceuticals.


2013 ◽  
Vol 20 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Jane E. Schreiber ◽  
Katherine L. Possin ◽  
Jonathan M. Girard ◽  
Celiane Rey-Casserly

AbstractTheories of attention deficit/hyperactivity disorder (ADHD) increasingly highlight the role of neuropsychological impairment in ADHD; however, a consistent and identifiable pattern of performance on tests is not well established. The National Institutes of Health (NIH) Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER) battery provides measures of common variance across multiple executive function tests within specific domains and was used to characterize which executive functions are most affected in children with ADHD. Thirty-two children (24 male), ages 8–15 years (M = 12.02; SD = 2.29), diagnosed with ADHD and no comorbid disorder completed the NIH EXAMINER battery. Sixty age and gender matched healthy controls were chosen from a database of participants enrolled in the NIH EXAMINER multi-site study. Children with ADHD performed worse on the working memory score compared with the controls. No differences were found on the cognitive control or fluency scores. For children with ADHD, poorer working memory performance predicted parent report of child learning problems. Cognitive control and fluency scores did not predict learning problems. In summary, working memory emerges as a primary impairment in children with ADHD who have no comorbid disorders. Furthermore, working memory weaknesses may underlie the academic problems often seen in children with ADHD. (JINS, 2013, 19, 1–11)


Sign in / Sign up

Export Citation Format

Share Document