scholarly journals Effect of Galangal Essential Oil Emulsion on Quality Attributes of Cloudy Pineapple Juice

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Zhou ◽  
Yuefang Sun ◽  
Liqiang Zou ◽  
Lei Zhou ◽  
Wei Liu

Galangal essential oil is obtained from the rhizomes of galangal with proven anti-inflammatory, antioxidant, antiviral, and antimicrobial properties, which are valuable in the food industry. To explore the effect of galangal essential oil on the quality of pineapple juice, 0.05, 0.1, 0.2, and 0.4% galangal essential emulsion were added, and their influence on the physical stability, physicochemical properties, microbial quantity, and aroma profiles of cloudy pineapple juice were evaluated. The essential oil emulsion of galangal is a milky white liquid with a strong aroma of galangal. The pH values of emulsion increased from 4.35 to 5.05 with the increase in essential oil concentration, and there was no significant difference in the particle size of the pineapple juice. The results showed that the galangal essential oil emulsion was stable and the stability of the cloudy pineapple juice was significantly enhanced by the essential oil emulsion determined using LUMiSizer. The cloudy pineapple juice with a 0.2% essential oil emulsion showed the most stability during storage. The lightness of the cloudy pineapple juice increased instantly with the essential oil emulsion addition. In addition, the microbial quantity of the cloudy pineapple juice was decreased by the individual essential oil emulsion or combined with thermal treatment to hold a longer shelf life. The microbial counts in pineapple juice treated by 0.4% essential oil emulsion and thermal treatment only increased from 1.06 to 1.59 log CFU/ml after 4 days of storage at 25°C. Additionally, the pH and total soluble solids showed a slightly increasing trend; however, the value of titratable acidity, free radical scavenging capacity, and ascorbic acid content of the cloudy pineapple juice showed no significant change. Finally, the results of the electronic nose showed that the aroma components of the pineapple juice were changed by the essential oil emulsion and thermal treatment, and the difference was especially evident in the content of the sulfur, sulfur organic, and aromatics compounds. Consequently, the results indicated that galangal essential oil emulsion can be used as juice additives to improve the quality attributes and extend the shelf-life of cloudy pineapple juice.

2021 ◽  
pp. 108201322098310
Author(s):  
Noelia Castillejo ◽  
Ginés Benito Martínez-Hernández ◽  
Francisco Artés-Hernández

The effect of revalorized Bimi leaves (B) and/or mustard (M) addition, as supplementary ingredients, to develop an innovative kale (K) pesto sauce was studied. Microbial, physicochemical (color, total soluble solids content -SSC-, pH and titratable acidity –TA-) and sensory quality were studied during 20 days at 5 °C. Bioactive compounds changes (total phenolics, total antioxidant capacity and glucoraphanin contents) were also monitored throughout storage. The high TA and pH changes in the last 6 days of storage were avoided in the K+B pesto when adding mustard, due to the antimicrobial properties of this brassica seed. SSC was increased when B + M were added to the K pesto, which positively masked the kale-typical bitterness. Mustard addition hardly change yellowness of the K pesto, being not detected in the sensory analyses, showing K+B+M pesto the lowest color differences after 20 days of shelf life. The addition of Bimi leaves to the K pesto enhanced its phenolic content while mustard addition did not negatively affect such total antioxidant compounds content. Finally, mustard addition effectively aimed to glucoraphanin conversion to its bioactive products. Conclusively, an innovative kale pesto supplemented with Bimi by-products was hereby developed, being its overall quality well preserved up to 20 days at 5 °C due to the mustard addition.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


2014 ◽  
Vol 66 (1) ◽  
pp. 401-413 ◽  
Author(s):  
Ksenija Mileski ◽  
Ana Dzamic ◽  
Ana Ciric ◽  
Slavica Grujic ◽  
M. Ristic ◽  
...  

This study was undertaken to determine the antioxidant and antimicrobial effect of essential oil and extracts of Echinophora sibthorpiana Guss. (fam. Apiaceae) collected in Macedonia. The chemical composition of E. sibthorpiana essential oil was characterized by the presence of methyl eugenol (60.40%), p-cymene (11.18%) and ?-phellandrene (10.23%). The free radical scavenging activity of extracts and essential oil was evaluated by DPPH and ABTS assays. The aqueous extract of aerial parts exhibited the strongest scavenging activity (IC50=1.67 mg/ml); results of the ABTS test showed that the most effective was the ethanol extract of aerial parts (1.11 mg vit. C/g). The essential oil showed stronger antioxidant activity compared to hydroxyanisole, ascorbic acid and quercetin that were used in the DPPH and ABTS tests, respectively. The total phenolic and flavonoid concentrations in the extracts ranged between 38.65-60.72 mg GA/g, and 3.15-19.00 mg Qu/g, respectively. The antimicrobial properties of the extracts and essential oil were investigated using a micro-well dilution technique against human pathogenic strains. The results were comparable with the effects of the positive controls, streptomycin and fluconazole. These findings indicate that E. sibthorpiana extracts and oil can be used in preventive treatments and as an alternative for synthetic preservatives.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 318 ◽  
Author(s):  
Monserrat Escamilla-García ◽  
María Rodríguez-Hernández ◽  
Hilda Hernández-Hernández ◽  
Luis Delgado-Sánchez ◽  
Blanca García-Almendárez ◽  
...  

Papaya production plays an important economic role in Mexico’s economy. After harvest, it continues to ripen, leading to softening, skin color changes, development of strong aroma, and microbial spoilage. The objective of this work was to apply an active coating of chitosan–starch to increase papaya shelf life and to evaluate physicochemical and antimicrobial properties of the coating. Papaya surfaces were coated with a chitosan-oxidized starch (1:3 w/w) solution and stored at room temperature (25 ± 1 °C) for 15 days. Variables measured were color, titratable acidity, vitamin C, pH, soluble solids, volatile compounds by gas chromatography, texture, homogeneity by image analysis, and coating antimicrobial activity. At the end of the storage time, there were no significant differences (p > 0.05) between coated and uncoated papayas for pH (4.3 ± 0.2), titratable acidity (0.12% ± 0.01% citric acid), and soluble solids (12 ± 0.2 °Bx). Papaya firmness decreased to 10 N for coated and 0.5 N for uncoated papayas. Volatile compounds identified in uncoated papaya (acetic acid, butyric acid, ethyl acetate, ethyl butanoate) are related to fermentation. Total microbial population of coated papaya decreased after 15 days, whereas population of uncoated papaya increased. This active coating permitted longer shelf life of papaya than that of the uncoated fruit.


Author(s):  
Shuzhi Li ◽  
Jingyang Zhou ◽  
Yanan Wang ◽  
Anguo Teng ◽  
Kai Zhang ◽  
...  

AbstractEmulsion is an efficient encapsulation tool for enhancing the functional properties of essential oils (EOs). Herein, two two-dimensional cinnamon essential oil emulsions (from micro- to nanoscales) were emulsified by hydroxypropyl methylcellulose, and their antimicrobial and physicochemical properties were investigated. For the models of Escherichia coli CGMCC 1.0907, Salmonella enterica subsp. Enterica serovar Typhi (CICC 10867), Staphylococcus aureus CGMCC 1.0089, and Listeria monocytogene CGMCC 1.9144, the minimum inhibitory concentration (MIC) of the nanoemulsion was 31.25 μL/mL compared to that of the microemulsion (62.5–125 μL/mL) and pure oil (125–250 μL/mL), indicating the superiority of nanoemulsion as an antibacterial agent. The results showed that the highest activity was seen in the gram-positive L. monocytogenes whereas the lowest was in the gram-negative S. enterica. The identified properties of HPMC (hydroxypropyl methylcellulose) provide the potential for emulsifying and enhancing essential oils in light industries, especially for food processing.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300
Author(s):  
Gislaine Aurelie Kemegne ◽  
Maximilienne Ascension Nyegue ◽  
Sylvain Leroy Sado Kamdem ◽  
François-Xavier Etoa ◽  
Chantal Menut

Ethnobotanic surveys have revealed the use of Mangifera indica L. (Anacardiaceae) bark for the treatment of infectious diarrhea. The essential oil of M. indica bark is described for the first time for its chemical composition, radical scavenging activity (DPPH method) and antimicrobial properties. The total phenols content of its water and ethanol bark extracts as well as their radical scavenging and antimicrobial properties were also evaluated. Four commercial plant extracts were also studied for a comparison purpose. The antimicrobial activities were measured for all samples against three Gram (-): Escherichia coli, Salmonella enteritidis, Shigella and two Gram (+): Staphylococcus aureus and Bacillus cereus bacteria. The M. indica bark essential oil was characterized by the association of two major sesquiterpenes: ( E)-β-caryophyllene (60.3%) and α-humulene (36.7%). It presented the lowest ratio of concentration to inhibition zone diameter on all the strains. The aqueous and ethanol extracts of M. indica bark were characterized by high contents of total phenols compounds and high radical scavenging activity compared to the essential oil. Finally, the interesting combination of the antibacterial and antiradical activities of the aqueous M. indica bark extract justifies the traditional use of this plant part in decoction form for the treatment of diarrheal infections.


Author(s):  
Suchismita Jena ◽  
Ramesh K. Goyal ◽  
Anil K. Godhara ◽  
Abhilash Mishra

Aims:  To evaluate the potentiality of bio-extract coatings for achieving extended shelf life with enhance fruit quality attributes in pomegranate under ambient storage condition.  Study Design:  The lab experiment conducted in complete randomized design with three repetitions on Mridula cultivar of pomegranate.     Place and Duration of Study:  The experiment was conducted during September 2016 at department of fruit science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India. Methodology: Pomegranate freshly harvested fruits were coated with three bio-extracts coatings viz. Aloe vera (50,75 and 100%), ginger (1,2 and 3%) and mints (10,20 and 30%). The coated fruits were stored at ambient room condition in corrugated fiber board boxes for twelve days.  Periodically effects of bio-extract coatings, storage period and their interaction were observed for physiological loss in weight, decay loss, juice content, TSS: acid ratio, ascorbic acid content and anthocyanin content.    Results: Surface coating with Aloe vera extract 100% was found most effective in reducing physiological loss in weight (50% less reduction as compared to untreated control) whereas ginger extract 3% in reducing the decay loss of fruits (9.65%) as compared to untreated control (23.36%). Among various treatments, the coating of pomegranate fruits with Aloe vera extract 100% resulted in lowest total soluble solids to acid ratio (32.17%) and significantly highest content of juice (47.17%), anthocyanin (13.98 mg/100 g) and ascorbic acid (12.82 mg/100 g) of the fruits along with highest organoleptic rating. The quality attributes viz. total soluble solids to acid ratio, anthocyanin of fruits increased with progression of storage period, while juice content and ascorbic acid decreased. Conclusion: Bio-extract coating of Aloe vera (100%) substantially improved the shelf life with retaining better fruit quality attributes under ambient conditions and has the potential to substitute the prevalent chemical coatings for pomegranate.  


2016 ◽  
Vol 30 (4) ◽  
pp. 551-557 ◽  
Author(s):  
Joslin Menezes ◽  
K.A. Athmaselvi

AbstractSapota fruits are highly perishable and have short shelf life at the ambient conditions. The edible coatings have been used on different agricultural products in order to extend their post harvest life. In the present study, the polysaccharide based edible coating made up of sodium alginate and pectin (2%) was studied on the shelf life of sapota fruits. The coating of the fruits is done by dipping method with two dipping time (2 and 4 min). The both control and coated sapota fruits were stored at refrigerated temperature (4±1°C). The physico-chemical analysis including acidity, total soluble solids, ascorbic acid, pH, weight loss, colour and firmness were measured on 1, 8, 15, 23 and 30th day of storage. There was significant difference (p≤0.05) in these physico-chemical parameters between control and coated sapota fruits with 2 and 4 min dipping time. The sensory analysis of control and coated sapota fruits showed that, the polysaccharide coating with 2 minutes dipping time was effective in maintaining the organoleptic properties of the fruits.


2012 ◽  
Vol 92 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Bernard Goyette ◽  
Clément Vigneault ◽  
Marie Thérèse Charles ◽  
Vijaya G. S. Raghavan

Goyette, B., Vigneault, C., Charles, M. T. and Raghavan, V. G. S. 2012. Effect of hyperbaric treatments on the quality attributes of tomato. Can. J. Plant Sci. 92: 541–551. An experimental hyperbaric system was conceptualized, designed and built to explore the effect of hyperbaric treatment on the quality attributes of tomato. Tomato fruits at the early breaker stage were subjected to hyperbaric pressures of 1, 3, 5, 7 or 9 atmabs for different durations (5, 10 or 15 d) at 13°C. The effect of hyperbaric treatment on postharvest quality of tomato fruit was evaluated with an emphasis on weight loss, firmness, color, titratable acidity (TA) and total soluble solids (TSS). Hyperbaric treated tomato fruit ripened more slowly and were characterized by lower respiration rate than fruits kept under ambient conditions. Significant differences in weight loss, color, lycopene concentration and firmness were found between hyperbaric treated and control tomato fruit. No significant difference was found in the sugar/acid ratio (TSS/TA).


Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document