scholarly journals Dietary Phospholipids Prepared From Scallop Internal Organs Attenuate the Serum and Liver Cholesterol Contents by Enhancing the Expression of Cholesterol Hydroxylase in the Liver of Mice

2021 ◽  
Vol 8 ◽  
Author(s):  
Koki Sugimoto ◽  
Ryota Hosomi ◽  
Munehiro Yoshida ◽  
Kenji Fukunaga

In this study, we successfully prepared scallop oil (SCO), which contains high levels of phospholipids (PL) and eicosapentaenoic acid (EPA), from the internal organs of the Japanese giant scallop (Patinopecten yessoensis), one of the most important underutilized fishery resources in Japan. The intake of SCO lowers the serum and liver cholesterol contents in mice; however, whether the fatty acids (FA) composition or PL of SCO exhibits any cholesterol-lowering effect remains unknown. To elucidate whether the cholesterol-lowering function is due to FA composition or PL of SCO, and investigate the cholesterol-lowering mechanism by SCO, in the present study, mice were fed SCO's PL fraction (SCO-PL), triglyceride (TG)-type oil with almost the same FA composition as SCO-PL, called SCO's TG fraction (SCO-TG), soybean oil (SOY-TG), and soybean's PL fraction (SOY-PL). Male C57BL/6J mice (5-week-old) were fed high-fat and cholesterol diets containing 3% (w/w) experimental oils (SOY-TG, SOY-PL, SCO-TG, and SCO-PL) for 28 days. The SCO-PL diet significantly decreased the serum and liver cholesterol contents compared with the SOY-TG diet, but the intake of SOY-PL and SCO-TG did not show this effect. This result indicated that the serum and liver cholesterol-lowering effect observed in the SCO intake group was due to the effect of SCO-PL. The cholesterol-lowering effect of SCO-PL was in part related to the promotion of liver cholesterol 7α-hydroxylase (CYP7A1) expression, which is the rate-limiting enzyme for bile acid synthesis. In contrast, the expression levels of the ileum farnesoid X receptor (Fxr) and fibroblast growth factor 15 (Fgf15), which inhibit the expression of liver CYP7A1, were significantly reduced in the SCO-PL group than the SOY-TG group. From these results, the increase in the liver CYP7A1 expression by dietary SCO-PL was in part through the reduction of the ileum Fxr/Fgf15 regulatory pathway. Therefore, this study showed that SCO-PL may be a health-promoting component as it lowers the serum and liver cholesterol contents by increasing the liver CYP7A1 expression, which is not seen in SOY-PL and SCO-TG.

2017 ◽  
Vol 118 (10) ◽  
pp. 822-829 ◽  
Author(s):  
Yanan Wang ◽  
Scott V. Harding ◽  
Sijo J. Thandapilly ◽  
Susan M. Tosh ◽  
Peter J. H. Jones ◽  
...  

AbstractUnderlying mechanisms responsible for the cholesterol-lowering effect ofβ-glucan have been proposed, yet have not been fully demonstrated. The primary aim of this study was to determine whether the consumption of barleyβ-glucan lowers cholesterol by affecting the cholesterol absorption, cholesterol synthesis or bile acid synthesis. In addition, this study was aimed to assess whether the underlying mechanisms are related to cholesterol 7αhydroxylase (CYP7A1) SNP rs3808607 as proposed by us earlier. In a controlled, randomised, cross-over study, participants with mild hypercholesterolaemia (n30) were randomly assigned to receive breakfast containing 3 g high-molecular weight (HMW), 5 g low-molecular weight (LMW), 3 g LMW barleyβ-glucan or a control diet, each for 5 weeks. Cholesterol absorption was determined by assessing the enrichment of circulating13C-cholesterol over 96 h following oral administration; fractional rate of synthesis for cholesterol was assessed by measuring the incorporation rate of2H derived from deuterium oxide within the body water pool into the erythrocyte cholesterol pool over 24 h; bile acid synthesis was determined by measuring serum 7α-hydroxy-4-cholesten-3-one concentrations. Consumption of 3 g HMWβ-glucan decreased total cholesterol (TC) levels (P=0·029), but did not affect cholesterol absorption (P=0·25) or cholesterol synthesis (P=0·14). Increased bile acid synthesis after consumption of 3 g HMWβ-glucan was observed in all participants (P=0·049), and more pronounced in individuals carrying homozygous G of rs3808607 (P=0·033). In addition, a linear relationship between log (viscosity) ofβ-glucan and serum 7α-HC concentration was observed in homozygous G allele carriers. Results indicate that increased bile acid synthesis rather than inhibition of cholesterol absorption or synthesis may be responsible for the cholesterol-lowering effect of barleyβ-glucan. The pronounced TC reduction in G allele carriers of rs3808607 observed in the previous study may be due to enhanced bile acid synthesis in response to high-viscosityβ-glucan consumption in those individuals.


2021 ◽  
Vol 22 (14) ◽  
pp. 7451
Author(s):  
Harpreet Kaur ◽  
Drew Seeger ◽  
Svetlana Golovko ◽  
Mikhail Golovko ◽  
Colin Kelly Combs

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. It is hypothesized to develop due to the dysfunction of two major proteins, amyloid-β (Aβ) and microtubule-associated protein, tau. Evidence supports the involvement of cholesterol changes in both the generation and deposition of Aβ. This study was performed to better understand the role of liver cholesterol and bile acid metabolism in the pathophysiology of AD. We used male and female wild-type control (C57BL/6J) mice to compare to two well-characterized amyloidosis models of AD, APP/PS1, and AppNL-G-F. Both conjugated and unconjugated primary and secondary bile acids were quantified using UPLC-MS/MS from livers of control and AD mice. We also measured cholesterol and its metabolites and identified changes in levels of proteins associated with bile acid synthesis and signaling. We observed sex differences in liver cholesterol levels accompanied by differences in levels of synthesis intermediates and conjugated and unconjugated liver primary bile acids in both APP/PS1 and AppNL-G-F mice when compared to controls. Our data revealed fundamental deficiencies in cholesterol metabolism and bile acid synthesis in the livers of two different AD mouse lines. These findings strengthen the involvement of liver metabolism in the pathophysiology of AD.


2017 ◽  
Vol 292 (26) ◽  
pp. 11055-11069 ◽  
Author(s):  
Preeti Pathak ◽  
Hailiang Liu ◽  
Shannon Boehme ◽  
Cen Xie ◽  
Kristopher W. Krausz ◽  
...  

2007 ◽  
Vol 131 (2) ◽  
pp. S62
Author(s):  
Mark Shamtsyan ◽  
Alexey Popov ◽  
Andrey Panchenko ◽  
Nikolay Petrischev ◽  
Nina Denisova

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2029 ◽  
Author(s):  
John YL Chiang

Bile acids are derived from cholesterol to facilitate intestinal nutrient absorption and biliary secretion of cholesterol. Recent studies have identified bile acids as signaling molecules that activate nuclear farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor-1 (Gpbar-1, also known as TGR5) to maintain metabolic homeostasis and protect liver and other tissues and cells from bile acid toxicity. Bile acid homeostasis is regulated by a complex mechanism of feedback and feedforward regulation that is not completely understood. This review will cover recent advances in bile acid signaling and emerging concepts about the classic and alternative bile acid synthesis pathway, bile acid composition and bile acid pool size, and intestinal bile acid signaling and gut microbiome in regulation of bile acid homeostasis.


2004 ◽  
Vol 134 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Yuguang Lin ◽  
Gert W. Meijer ◽  
Mario A. Vermeer ◽  
Elke A. Trautwein

Sign in / Sign up

Export Citation Format

Share Document