scholarly journals Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study

2022 ◽  
Vol 8 ◽  
Author(s):  
Magdalena Prochazkova ◽  
Eva Budinska ◽  
Marek Kuzma ◽  
Helena Pelantova ◽  
Jaromir Hradecky ◽  
...  

Background and Aim: Plant-based diets are associated with potential health benefits, but the contribution of gut microbiota remains to be clarified. We aimed to identify differences in key features of microbiome composition and function with relevance to metabolic health in individuals adhering to a vegan vs. omnivore diet.Methods: This cross-sectional study involved lean, healthy vegans (n = 62) and omnivore (n = 33) subjects. We assessed their glucose and lipid metabolism and employed an integrated multi-omics approach (16S rRNA sequencing, metabolomics profiling) to compare dietary intake, metabolic health, gut microbiome, and fecal, serum, and urine metabolomes.Results: The vegans had more favorable glucose and lipid homeostasis profiles than the omnivores. Long-term reported adherence to a vegan diet affected only 14.8% of all detected bacterial genera in fecal microbiome. However, significant differences in vegan and omnivore metabolomes were observed. In feces, 43.3% of all identified metabolites were significantly different between the vegans and omnivores, such as amino acid fermentation products p-cresol, scatole, indole, methional (lower in the vegans), and polysaccharide fermentation product short- and medium-chain fatty acids (SCFAs, MCFAs), and their derivatives (higher in the vegans). Vegan serum metabolome differed markedly from the omnivores (55.8% of all metabolites), especially in amino acid composition, such as low BCAAs, high SCFAs (formic-, acetic-, propionic-, butyric acids), and dimethylsulfone, the latter two being potential host microbiome co-metabolites. Using a machine-learning approach, we tested the discriminative power of each dataset. Best results were obtained for serum metabolome (accuracy rate 91.6%).Conclusion: While only small differences in the gut microbiota were found between the groups, their metabolic activity differed substantially. In particular, we observed a significantly different abundance of fermentation products associated with protein and carbohydrate intakes in the vegans. Vegans had significantly lower abundances of potentially harmful (such as p-cresol, lithocholic acid, BCAAs, aromatic compounds, etc.) and higher occurrence of potentially beneficial metabolites (SCFAs and their derivatives).

Author(s):  
Harold J. Boutte ◽  
Jacqueline Chen ◽  
Todd N. Wylie ◽  
Kristine M. Wylie ◽  
Yan Xie ◽  
...  

Background & Aims: Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to two years to determine which patients will wean from PN. Here we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Methods: Stool and sera were collected from healthy controls and from SBS patients (n=52) with ileostomy, jejunostomy, ileocolonic and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS, and serum amino acid analyses. Results: SBS patients exhibited altered gut microbiota with reduced gut microbial diversity compared to healthy controls. We observed differences in the microbiomes of SBS patients with ileostomy vs. jejunostomy, jejunocolonic vs. ileocolonic anastomoses, and PN-dependence compared to those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in SBS patients, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic acid. Conclusions: Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select SBS patients, promoting the ability to wean from PN. Pro-adaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.


2020 ◽  
Vol 6 (1) ◽  
pp. eaax6208 ◽  
Author(s):  
Su-Ling Zeng ◽  
Shang-Zhen Li ◽  
Ping-Ting Xiao ◽  
Yuan-Yuan Cai ◽  
Chu Chu ◽  
...  

Metabolic syndrome (MetS) is intricately linked to dysregulation of gut microbiota and host metabolomes. Here, we first find that a purified citrus polymethoxyflavone-rich extract (PMFE) potently ameliorates high-fat diet (HFD)–induced MetS, alleviates gut dysbiosis, and regulates branched-chain amino acid (BCAA) metabolism using 16S rDNA amplicon sequencing and metabolomic profiling. The metabolic protective effects of PMFE are gut microbiota dependent, as demonstrated by antibiotic treatment and fecal microbiome transplantation (FMT). The modulation of gut microbiota altered BCAA levels in the host serum and feces, which were significantly associated with metabolic features and actively responsive to therapeutic interventions with PMFE. Notably, PMFE greatly enriched the commensal bacterium Bacteroides ovatus, and gavage with B. ovatus reduced BCAA concentrations and alleviated MetS in HFD mice. PMFE may be used as a prebiotic agent to attenuate MetS, and target-specific microbial species may have unique therapeutic promise for metabolic diseases.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 147
Author(s):  
Quentin Leyrolle ◽  
Renata Cserjesi ◽  
Romane Demeure ◽  
Audrey M. Neyrinck ◽  
Camille Amadieu ◽  
...  

Obesity is associated with an increased risk of several neurological and psychiatric diseases, but few studies report the contribution of biological features in the occurrence of mood disorders in obese patients. The aim of the study is to evaluate the potential links between serum metabolomics and gut microbiome, and mood disturbances in a cohort of obese patients. Psychological, biological characteristics and nutritional habits were evaluated in 94 obese subjects from the Food4Gut study stratified according to their mood score assessed by the Positive and Negative Affect Schedule (PANAS). The fecal gut microbiota and plasma non-targeted metabolomics were analysed. Obese subjects with increased negative mood display elevated levels of Coprococcus as well as decreased levels of Sutterella and Lactobacillus. Serum metabolite profile analysis reveals in these subjects altered levels of several amino acid-derived metabolites, such as an increased level of L-histidine and a decreased in phenylacetylglutamine, linked to altered gut microbiota composition and function rather than to differences in dietary amino acid intake. Regarding clinical profile, we did not observe any differences between both groups. Our results reveal new microbiota-derived metabolites that characterize the alterations of mood in obese subjects, thereby allowing to propose new targets to tackle mood disturbances in this context. Food4gut, clinicaltrial.gov: NCT03852069.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2402
Author(s):  
Emily A. Losno ◽  
Katharina Sieferle ◽  
Federico J. Armando Perez-Cueto ◽  
Christian Ritz

The human gut microbiota are the microorganisms (generally bacteria and archaea) that live in the digestive tracts of humans. Due to their numerous functions, the gut microbiota can be considered a virtual organ of the body, playing a pivotal role in health maintenance. Dietary habits contribute to gut microbiota composition, and evidence from observational and intervention studies suggest that vegan diets may promote health, potentially through affecting the diverse ecosystem of beneficial bacteria in the gut. A systematic literature search was conducted on PubMed and Scopus to identify studies investigating the microbiota composition in vegans. Vegans are defined as people excluding food products that are derived from animals from their diet. Nine observational studies were identified. The main outcome of the systematic review was an increase in Bacteroidetes on the phylum level and a higher abundance of Prevotella on the genus level. In conclusion, the present systematic literature review highlighted some benefits of a vegan diet but also demonstrated the complexity of evaluating results from gut microbiota research. The available evidence only consisted of cross-sectional studies, therefore suggesting the need for well-designed randomised controlled trials. Furthermore, the quality assessment of the studies included in the review suggested a lack of standardised and validated methods for participant selection as well as for faecal sampling and faecal analysis.


2020 ◽  
Author(s):  
Xin Yuan ◽  
Ruimin Chen ◽  
Ying Zhang ◽  
Xiangquan Lin ◽  
Xiaohong Yang

Abstract Background: The make-up of gut microbiota at different puberty stages has not been reported. This cross-sectional study analyzed the bio-diversity of gut microbiota at different puberty stages. Methods: The fecal microbiome was determined in 89 Chinese subjects aged 5-15 years. Subjects were grouped as non-pubertal (n=42) or pubertal (n=47) according to Tanner stages. Gut colonization patterns were determined by 16S rRNA microbiome profiling.Results: The subjects were divided into non-pubertal (n=42, male%: 66.7%) or pubertal groups (n=47, male%:44.68); in both groups, Firmicutes, Bacteroidetes and Proteobacteria were the dominant phylum. There was no difference of alpha- and beta-diversity among disparate puberty stages. Non-pubertal subjects had members of the order Clostridiales, family Clostridiaceae, genus Coprobacillus which were significantly more prevalent than puberty subjects. Also, the pubertal subjects had members of class Betaproteobacteria, order Burkholderiales which were significantly more prevalent than the non-pubertal subjects. Their relative abundance were independent of BMI-Z. In the pubertal subjects, the abundance of genus Adlercreutzia, Ruminococcus, Dorea, Clostridium and Parabacteroides was associated with the level of testosterone.Conclusion: This is the first report of the diversity of gut microbiota at different puberty stages. The various species of gut microbiota changed gradually associated with puberty stages. Differences in gut microflora at different pubertal status may be related to androgen levels.


2018 ◽  
Author(s):  
Byron J Smith ◽  
Richard A Miller ◽  
Aaron C Ericsson ◽  
David C Harrison ◽  
Randy Strong ◽  
...  

AbstractBackgroundTreatment with theα-glucosidase inhibitor acarbose increases median lifespan by approximately 20% in male mice and 5% in females. This longevity extension differs from dietary restriction based on a number of features, including the relatively small effects on weight and the sex-specificity of the lifespan effect. By inhibiting host digestion, acarbose increases the flux of starch to the lower digestive system, resulting in changes to the gut microbiota and their fermentation products. Given the documented health benefits of short-chain fatty acids (SCFAs), the dominant products of starch fermentation by gut bacteria, this secondary effect of acarbose could contribute to increased longevity in mice. To explore this hypothesis, we compared the fecal microbiome of mice treated with acarbose to control mice at three independent study sites.ResultsMicrobial communities and the concentrations of SCFAs in the feces of mice treated with acarbose were notably different from those of control mice. At all three study sites, the bloom of a single bacterial taxon was the most obvious response to acarbose treatment. The blooming populations were classified to the largely unculturedBacteroidalesfamilyMuribaculaceaeand were the same taxonomic unit at two of the three sites. Total SCFA concentrations in feces were increased in treated mice, with increased butyrate and propionate in particular. Across all samples,Muribaculaceaeabundance was strongly correlated with propionate and community composition was an important predictor of SCFA concentrations. Cox proportional hazards regression showed that the fecal concentrations of acetate, butyrate, and propionate were, together, predictive of mouse longevity even while controlling for sex, site, and acarbose.ConclusionWe have demonstrated a correlation between fecal SCFAs and lifespan in mice, suggesting a role of the gut microbiota in the longevity-enhancing properties of acarbose. Treatment modulated the taxonomic composition and fermentation products of the gut microbiome, while the site-dependence of the microbiota illustrates the challenges facing reproducibility and interpretation in microbiome studies. These results motivate future studies exploring manipulation of the gut microbial community and its fermentation products for increased longevity, and to test a causal role of SCFAs in the observed effects of acarbose.


2020 ◽  
Author(s):  
Xin Yuan ◽  
Ruimin Chen ◽  
Ying Zhang ◽  
Xiangquan Lin ◽  
Xiaohong Yang

Abstract Background: The make-up of gut microbiota at different puberty stages has not been reported. This cross-sectional study analyzed the bio-diversity of gut microbiota at different puberty stages. Methods: The fecal microbiome was determined in 89 Chinese subjects aged 5-15 years. Subjects were grouped as non-pubertal (n=42) or pubertal (n=47) according to Tanner stages. Gut colonization patterns were determined by 16S rDNA microbiome profiling.Results: The subjects were divided into non-pubertal (n=42, male%: 66.7%) or pubertal groups (n=47, male%:44.68); in both groups, Firmicutes, Bacteroidetes and Proteobacteria were the dominant phylum. There was no difference of alpha- and beta-diversity among disparate puberty stages. Non-pubertal subjects had significantly higher members of the genus Turicibacter and lower members of genus Sutterella than pubertal subjects. Of note, the proportion of genus Sutterella increased gradually with the pubertal status and independent of BMI-Z. In the pubertal subjects, the abundance of genus Adlercreutzia, Dorea, Clostridium and Parabacteroides was associated with the level of testosterone.Conclusion: This is the first report of the diversity of gut microbiota at different puberty stages. The various species of gut microbiota changed gradually associated with puberty stages. Differences in gut microflora at different pubertal status may be related to androgen levels.


2020 ◽  
Author(s):  
Xin Yuan ◽  
Ruimin Chen ◽  
Ying Zhang ◽  
Xiangquan Lin ◽  
Xiaohong Yang

Abstract Background: The make-up of gut microbiota at different puberty stages has not been reported. This cross-sectional study analyzed the bio-diversity of gut microbiota at different puberty stages. Methods: The fecal microbiome was determined in 89 Chinese subjects aged 5-15 years. Subjects were grouped as non-pubertal (n=42) or pubertal (n=47) according to Tanner stages. Gut colonization patterns were determined by 16S rDNA microbiome profiling.Results: The subjects were divided into non-pubertal (n=42, male%: 66.7%) or pubertal groups (n=47, male%:44.68); in both groups, Firmicutes, Bacteroidetes and Proteobacteria were the dominant phylum. There was no difference of alpha- and beta-diversity among disparate puberty stages. Non-pubertal subjects had significantly higher members of the genus Turicibacter and lower members of genus Sutterella than pubertal subjects. Of note, the proportion of genus Sutterella increased gradually with the pubertal status and independent of BMI-Z. In the pubertal subjects, the abundance of genus Adlercreutzia, Dorea, Clostridium and Parabacteroides was associated with the level of testosterone.Conclusion: This is the first report of the diversity of gut microbiota at different puberty stages. The various species of gut microbiota changed gradually associated with puberty stages. Differences in gut microflora at different pubertal status may be related to androgen levels.


2021 ◽  
pp. 1-8
Author(s):  
M.A. González Hernández ◽  
E.E. Canfora ◽  
E.E. Blaak

The gut microbiota may affect host metabolic health through microbial metabolites. The balance between the production of microbial metabolites by saccharolytic and proteolytic fermentation may be an important determinant of metabolic health. Amongst the best-studied saccharolytic microbial metabolites are the short-chain fatty acids acetate, propionate and butyrate. However, human data on the role of other microbial fermentation by-products in metabolic health are greatly lacking. Therefore, we compared in a cross-sectional study the faecal microbial metabolites (caproate, lactate, valerate, succinate, and the branched-chain fatty acids (BCFA) (isobutyrate, isovalerate)) between insulin sensitive (homeostatic model assessment of insulin resistance (HOMA-IR), HOMA-IR<1.85, IS) and insulin resistant (HOMA-IR>1.85, IR) individuals. Additionally, we assessed the relationships between faecal metabolites and markers of metabolic health including fasting glucose, insulin, free fatty acids, insulin resistance (HOMA-IR) and fasting substrate oxidation in 86 individuals with a wide range of body mass index. Faecal metabolite concentrations did not significantly differ between IS and IR. Furthermore, there were no associations between microbial metabolites and metabolic health markers, except for a slight positive association of isovalerate with carbohydrate oxidation (E%, std β 0.194, P=0.011) and fat oxidation (E%, std β -0.075, P=0.047), also after adjustment for age, sex and BMI. In summary, faecal caproate, lactate, valerate, succinate, and BCFA (isobutyrate, isovalerate) were not different between IR and IS individuals, nor was there any association between these faecal metabolites and parameters of metabolic health. Further human intervention studies are warranted to investigate the role of these microbially-derived fermentation products and their kinetics in metabolic health and insulin sensitivity.


2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Sign in / Sign up

Export Citation Format

Share Document