scholarly journals Dynamic Associations of Milk Components With the Infant Gut Microbiome and Fecal Metabolites in a Mother–Infant Model by Microbiome, NMR Metabolomic, and Time-Series Clustering Analyses

2022 ◽  
Vol 8 ◽  
Author(s):  
Yosuke Komatsu ◽  
Daiki Kumakura ◽  
Namiko Seto ◽  
Hirohisa Izumi ◽  
Yasuhiro Takeda ◽  
...  

Background: The gut microbiome and fecal metabolites of breastfed infants changes during lactation, and are influenced by breast milk components. This study aimed to investigate dynamic associations of milk components with the infant gut microbiome and fecal metabolites throughout the lactation period in a mother–infant model.Methods: One month after delivery, breast milk and subsequent infant feces were collected in a pair for 5 months from a mother and an exclusively breastfed infant. Composition of the fecal microbiome was determined with 16S rRNA sequencing. Low-molecular-weight metabolites, including human milk oligosaccharides (HMOs), and antibacterial proteins were measured in feces and milk using 1H NMR metabolomics and enzyme-linked immunosorbent assays. The association of milk bioactive components with the infant gut microbiome and fecal metabolites was determined with Python clustering and correlation analyses.Results: The HMOs in milk did not fluctuate throughout the lactation period. However, they began to disappear in infant feces at the beginning of month 4. Notably, at this time-point, a bifidobacterium species switching (from B. breve to B. longum subsp. infantis) occurred, accompanied by fluctuations in several metabolites including acetate and butyrate in infant feces.Conclusions: Milk bioactive components, such as HMOs, might play different roles in the exclusively breastfed infants depending on the lactation period.

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Steven A. Frese ◽  
Andra A. Hutton ◽  
Lindsey N. Contreras ◽  
Claire A. Shaw ◽  
Michelle C. Palumbo ◽  
...  

ABSTRACT The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function. Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Bethany M. Henrick ◽  
Andra A. Hutton ◽  
Michelle C. Palumbo ◽  
Giorgio Casaburi ◽  
Ryan D. Mitchell ◽  
...  

ABSTRACT Historically, Bifidobacterium species were reported as abundant in the breastfed infant gut. However, recent studies in resource-rich countries show an increased abundance of taxa regarded as signatures of dysbiosis. It is unclear whether these differences are the product of genetics, geographic factors, or interventions such as formula feeding, antibiotics, and caesarean section. Fecal pH is strongly associated with Bifidobacterium abundance; thus, pH could be an indicator of its historical abundance. A review of 14 clinical studies published between 1926 and 2017, representing more than 312 healthy breastfed infants, demonstrated a change in fecal pH from 5.0 to 6.5 (adjusted r 2 = 0.61). This trend of increasing infant fecal pH over the past century is consistent with current reported discrepancies in Bifidobacterium species abundance in the gut microbiome in resource-rich countries compared to that in historical reports. Our analysis showed that increased fecal pH and abundance of members of the families Enterobacteriaceae , Clostridiaceae , Peptostreptococcaceae , and Veillonellaceae are associated, indicating that loss of highly specialized Bifidobacterium species may result in dysbiosis, the implications of which are not yet fully elucidated. Critical assessment of interventions that restore this ecosystem, measured by key parameters such as ecosystem productivity, gut function, and long-term health, are necessary to understand the magnitude of this change in human biology over the past century.


Author(s):  
Claire E. O’Brien ◽  
Anna K. Meier ◽  
Karina Cernioglo ◽  
Ryan D. Mitchell ◽  
Giorgio Casaburi ◽  
...  

Abstract Background Recent studies have reported a dysfunctional gut microbiome in breastfed infants. Probiotics have been used in an attempt to restore the gut microbiome; however, colonization has been transient, inconsistent among individuals, or has not positively impacted the host’s gut. Methods This is a 2-year follow-up study to a randomized controlled trial wherein 7-day-old infants received 1.8 × 1010 colony-forming unit Bifidobacterium longum subsp. infantis (B. infantis) EVC001 (EVC) daily for 21 days or breast milk alone (unsupplemented (UNS)). In the follow-up study, mothers (n = 48) collected infant stool at 4, 6, 8, 10, and 12 months postnatal and completed the health-diet questionnaires. Results Fecal B. infantis was 2.5–3.5 log units higher at 6–12 months in the EVC group compared with the UNS group (P < 0.01) and this relationship strengthened with the exclusion of infants who consumed infant formula and antibiotics. Infants in the EVC group had significantly higher Bifidobacteriaceae and lower Bacteroidaceae and Lachnospiraceae (P < 0.05). There were no differences in any health conditions between the two groups. Conclusions Probiotic supplementation with B. infantis within the first month postnatal, in combination with breast milk, resulted in stable colonization that persisted until at least 1 year postnatal. Impact A dysfunctional gut microbiome in breastfed infants is common in resource-rich nations and associated with an increased risk of immune diseases. Probiotics only transiently exist in the gut without persistent colonization or altering the gut microbiome. This is the first study to show that early probiotic supplementation with B. infantis with breast milk results in stable colonization of B. infantis and improvements to the gut microbiome 1 year postnatal. This study addresses a key gap in the literature whereby probiotics can restore the gut microbiome if biologically selected microorganisms are matched with their specific food in an open ecological niche.


2019 ◽  
Vol 69 (3) ◽  
pp. 363-369 ◽  
Author(s):  
Danielle Nicole Rendina ◽  
Gabriele R. Lubach ◽  
Gregory J. Phillips ◽  
Mark Lyte ◽  
Christopher L. Coe

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ayşe Meltem Ergen ◽  
Sıddıka Songül Yalçın

Abstract Background Breast milk is a natural and unique nutrient for optimum growth and development of the newborn. The aim of this study was to investigate the presence of unpredictable drug residues in mothers’ milk and the relationship between drug residues and maternal-infant characteristics. Methods In a descriptive study, breastfed infants under 3 months of age and their mothers who applied for child health monitoring were enrolled for the study. Information forms were completed for maternal-infant characteristics, breastfeeding problems, crying and sleep characteristics of infants. Maternal and infant anthropometric measurements and maternal milk sample were taken. Edinburgh Postpartum Depression Scale was applied to mothers. RANDOX Infiniplex kit for milk was used for residual analysis. Results Overall, 90 volunteer mothers and their breastfed infants were taken into the study and the mean age of the mothers and their infants was 31.5 ± 4.2 years and 57.8 ± 18.1 days, respectively. Anti-inflammatory drug residues in breast milk were detected in 30.0% of mothers and all had tolfenamic acid. Overall, 94.4% had quinolone, 93.3% beta-lactam, 31.1% aminoglycoside and 13.3% polymycin residues. Drugs used during pregnancy or lactation period were not affected by the presence of residues. Edinburgh postpartum depression scores of mothers and crying and sleeping problems of infants were similar in cases with and without drug residues in breast milk. When controlling confounding factors, maternal body mass index alterations were detected to be significantly lower in mothers with anti-inflammatory drug residues in breast milk than in their counterparts (p = 0.017). Conclusions Our study suggests that there are unpredictable drug residues in the milk of many mothers. Anti-inflammatory drug exposure might affect maternal weight change during the postpartum period. Further studies are required to evaluate the impact of drug residues on maternal and infant health.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 634 ◽  
Author(s):  
Marina Aparicio ◽  
Claudio Alba ◽  
Juan Miguel Rodríguez ◽  
Leonides Fernández ◽  

The objective of this pilot study was to assess the fecal microbiome and different immunological parameters in infant feces and maternal milk from mother–infant pairs in which the infants were suffering from different gastrointestinal disorders (colic, non-IgE-mediated cow milk protein allergy (CMPA), and proctocolitis). A cohort of 30 mother–infant pairs, in which the infants were diagnosed with these gastrointestinal disorders or included as healthy controls, were recruited. Bacterial composition of infant feces and breast milk was determined by metataxonomic sequencing. Immunological compounds were quantified using multiplexed immunoassays. A higher abundance of Eggerthellaceae, Lachnospiraceae and Peptostreptococcaceae, and lower abundance of Bifidobacterium and higher abundance of Rothia were registered in fecal samples from the CMPA group. Eggerthellaceae was also significantly more abundant in milk samples of the CMPA group. There were no differences in the concentration of immunological compounds in infant fecal samples between the four groups. In contrast, differences were found in the concentration and/or frequency of compounds related to acquired immunity and granulocyte colony stimulating factor (GCSF) in breast milk samples. In conclusion, a few microbial signatures in feces may explain part of the difference between CMPA and other infants. In addition, some milk immunological signatures have been uncovered among the different conditions addressed in this pilot study.


Author(s):  
Flaminia Bardanzellu ◽  
Melania Puddu ◽  
Vassilios Fanos

In this context of COVID-19 pandemic, great interest has been aroused by the potential maternal transmission of SARS-CoV-2 by transplacental route, during delivery, and, subsequently, through breastfeeding. Some open questions still remain, especially regarding the possibility of finding viable SARS-CoV-2 in breast milk (BM), although this is not considered a worrying route of transmission. However, in BM, it was pointed out the presence of antibodies against SARS-CoV-2 and other bioactive components that could protect the infant from infection. The aim of our narrative review is to report and discuss the available literature on the detection of anti-SARS-CoV-2 antibodies in BM of COVID-19 positive mothers, and we discussed the unique existing study investigating BM of SARS-CoV-2 positive mothers through metabolomics, and the evidence regarding microbiomics BM variation in COVID-19. Moreover, we tried to correlate metabolomics and microbiomics findings in BM of positive mothers with potential effects on breastfed infants metabolism and health. To our knowledge, this is the first review summarizing the current knowledge on SARS-CoV-2 effects on BM, resuming both “conventional data” (antibodies) and “omics technologies” (metabolomics and microbiomics).


2018 ◽  
Vol 13 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Miao Duan ◽  
Jialin Yu ◽  
Jinxing Feng ◽  
Yu He ◽  
Sa Xiao ◽  
...  

AbstractBackgroundThis case-control study investigated an association between breast milk jaundice (BMJ) and infants’ gut microbiome. The study included determination of the diversity of the gut microbiome and identification of bacterial genera associated with BMJ.MethodsThe study population consisted of 12 infants with BMJ and 22 breastfed infants without jaundice (control). DNA collected from feces was analyzed by PCR amplification and 1% agarose gel electrophoresis, and then sequenced with a MiSeq system. Relative quantification bioinformatics was employed to analyze the DNA sequencing data. An Illumina high-throughput sequencing platform was used to analyze 16S rRNA variable (V) regions V3 and V4 in stool samples.ResultsIn the control group, the proportion ofEscherichia/Shigella(genus level) in the gut microbiome (64.67%) was significantly higher than that of the BMJ group. However, the prevalence ofBifidobacteriumorEnterococcusin the gut microbiome of the two groups was similar. The Simpson index indicated that the diversity of the bacterial population in the BMJ infants was significantly narrower than in the normal infants.ConclusionThe prevalence ofEscherichia/Shigellain the gut of breastfed infants is important for lowering BMJ development.


2017 ◽  
Vol 171 (7) ◽  
pp. 647 ◽  
Author(s):  
Pia S. Pannaraj ◽  
Fan Li ◽  
Chiara Cerini ◽  
Jeffrey M. Bender ◽  
Shangxin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document