scholarly journals Case Report and Literature Review: Primary Pulmonary NUT-Midline Carcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Yunxiang Zhang ◽  
Kai Han ◽  
Xiaotong Dong ◽  
Qian Hou ◽  
Tianbao Li ◽  
...  

Nuclear protein of the testis (NUT) carcinoma is a very rare and aggressive carcinoma characterized by chromosomal rearrangement. NUT-midline carcinoma (NMC) can occur anywhere in the body, but most of the tumors are found in the midline anatomic structure or mediastinum. Pulmonary-originated NMC is extremely rare and often difficult to be distinguished from other poorly differentiated tumors, making the diagnosis awfully challenged in clinical practice. There are less than 100 cases of NUT carcinoma reported so far. In this study, the diagnosis and molecular mechanisms of reported NUT carcinoma cases were reviewed. Furthermore, a case of primary pulmonary NUT-midline carcinoma and its pathological features was reported. The process of pathological identification and genomic analysis for establishing the diagnosis was discussed. We found that NUT carcinoma could be identified by combining CT, H&E staining, immunohistochemistry (IHC), and molecular tests. The development of NUT carcinoma might be associated with mutation of MYC, p63, and MED24 genes and the Wnt, MAPK, and PI3K signaling pathways. Our study provided a detailed molecular mechanistic review on NMC and established a procedure to identify pulmonary NMC.

2017 ◽  
Vol 10 (3) ◽  
pp. 987-991 ◽  
Author(s):  
Lauren N. Ko ◽  
Qing Y.  Weng ◽  
Johanna S. Song ◽  
Mackenzie Asel ◽  
Scott R. Granter ◽  
...  

NUT (nuclear protein of the testis) midline carcinoma (NMC) is a rare, poorly differentiated neoplasm with dismal prognosis. Though NMC are often metastatic by the time of presentation, cutaneous metastases have not been well described in the literature. We report a case of NMC in a patient who presented with grouped well-demarcated tender non-ulcerated erythematous nodules on the right mid-back. The lesions were initially diagnosed and treated as herpes zoster. Following failure to improve with antiviral therapy, imaging and skin biopsy revealed that the lesions were in fact cutaneous NUT carcinoma. Although NMC is an uncommon diagnosis, clinicians should be aware that affected patients can develop skin involvement to avoid unnecessary and harmful treatments.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Qian W. Huang ◽  
Li J. He ◽  
Shuang Zheng ◽  
Tao Liu ◽  
Bei N. Peng

NUT carcinoma (NC) is a rare and poorly differentiated tumor, with highly aggressive and fatal neoplasm. NC is characterized by chromosomal rearrangement involving NUTM1 gene, but lack of specific clinical and histomorphological features. It is more common in midline anatomic sites, such as head and neck, mediastinum, and other midline organs. NC may occur at any age, but mainly in children and young adults. In addition, male and female are equally affected. Most clinicians lack a clear understanding of the disease, and NC diagnostic reagents are still not widely used; therefore, misdiagnosis often occurs in clinic. Due to the highly aggressive nature of the disease and the insensitivity to nonspecific chemotherapy or radiotherapy, many patients have died before the confirmation of NC. In fact, the true incidence of NC is much higher than the current statistics. In recent years, targeted therapy for NC has also made some progress. This article aims to summarize the molecular mechanisms, clinicopathological characteristics, and treatment of NC.


2021 ◽  
pp. 106689692110195
Author(s):  
Grosse Claudia ◽  
Grosse Alexandra

Nuclear protein in testis (NUT) carcinoma represents a highly aggressive, poorly differentiated carcinoma that is genetically defined by rearrangement of NUT gene. The histomorphological appearance ranges from entirely undifferentiated carcinoma to carcinoma with prominent squamous differentiation. NUT carcinoma can display neuroendocrine features. Although it is typically distributed along the midline axis, it may manifest in nonmidline locations. The majority of patients develop rapidly disseminated disease. We illustrate 2 cases of NUT carcinoma, one located in the lung, which closely resembled a neuroendocrine carcinoma, and the other one with assumed lung origin demonstrating metastatic dissemination with diffuse bone involvement, which was clinically first suspected to be a hematological malignancy. Due to its undifferentiated nature, NUT carcinoma may be confused with many entities. NUT immunohistochemistry is considered to be sufficient for the diagnosis. Fluorescence in-situ hybridization analysis and next-generation sequencing are currently used to confirm the diagnosis.


Author(s):  
Robert Laumbach ◽  
Michael Gochfeld

This chapter describes the basic principles of toxicology and their application to occupational and environmental health. Topics covered include pathways that toxic substances may take from sources in the environment to molecular targets in the cells of the body where toxic effects occur. These pathways include routes of exposure, absorption into the body, distribution to organs and tissues, metabolism, storage, and excretion. The various types of toxicological endpoints are discussed, along with the concepts of dose-response relationships, threshold doses, and the basis of interindividual differences and interspecies differences in response to exposure to toxic substances. The diversity of cellular and molecular mechanisms of toxicity, including enzyme induction and inhibition, oxidative stress, mutagenesis, carcinogenesis, and teratogenesis, are discussed and the chapter concludes with examples of practical applications in clinical evaluation and in toxicity testing.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yan Deng ◽  
Shenqiang Hu ◽  
Chenglong Luo ◽  
Qingyuan Ouyang ◽  
Li Li ◽  
...  

Abstract Background During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. Results In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. Conclusions This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raphael Severino Bonadio ◽  
Larissa Barbosa Nunes ◽  
Patricia Natália S. Moretti ◽  
Juliana Forte Mazzeu ◽  
Stefano Cagnin ◽  
...  

AbstractMost biological features that occur on the body after death were already deciphered by traditional medicine. However, the molecular mechanisms triggered in the cellular microenvironment are not fully comprehended yet. Previous studies reported gene expression alterations in the post-mortem condition, but little is known about how the environment could influence RNA degradation and transcriptional regulation. In this work, we analysed the transcriptome of mouse brain after death under three concealment simulations (air exposed, buried, and submerged). Our analyses identified 2,103 genes differentially expressed in all tested groups 48 h after death. Moreover, we identified 111 commonly upregulated and 497 commonly downregulated genes in mice from the concealment simulations. The gene functions shared by the individuals from the tested environments were associated with RNA homeostasis, inflammation, developmental processes, cell communication, cell proliferation, and lipid metabolism. Regarding the altered biological processes, we identified that the macroautophagy process was enriched in the upregulated genes and lipid metabolism was enriched in the downregulated genes. On the other hand, we also described a list of biomarkers associated with the submerged and buried groups, indicating that these environments can influence the post-mortem RNA abundance in its particular way.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Svetlana N. Morozkina ◽  
Thi Hong Nhung Vu ◽  
Yuliya E. Generalova ◽  
Petr P. Snetkov ◽  
Mayya V. Uspenskaya

For a long time, the pharmaceutical industry focused on natural biologically active molecules due to their unique properties, availability and significantly less side-effects. Mangiferin is a naturally occurring C-glucosylxantone that has substantial potential for the treatment of various diseases thanks to its numerous biological activities. Many research studies have proven that mangiferin possesses antioxidant, anti-infection, anti-cancer, anti-diabetic, cardiovascular, neuroprotective properties and it also increases immunity. It is especially important that it has no toxicity. However, mangiferin is not being currently applied to clinical use because its oral bioavailability as well as its absorption in the body are too low. To improve the solubility, enhance the biological action and bioavailability, mangiferin integrated polymer systems have been developed. In this paper, we review molecular mechanisms of anti-cancer action as well as a number of designed polymer-mangiferin systems. Taking together, mangiferin is a very promising anti-cancer molecule with excellent properties and the absence of toxicity.


Sign in / Sign up

Export Citation Format

Share Document