scholarly journals Unique Genomic Alterations of Cerebrospinal Fluid Cell-Free DNA Are Critical for Targeted Therapy of Non-Small Cell Lung Cancer With Leptomeningeal Metastasis

2021 ◽  
Vol 11 ◽  
Author(s):  
Yongsheng Wang ◽  
Feng Jiang ◽  
Ruixue Xia ◽  
Ming Li ◽  
Chengyun Yao ◽  
...  

We reported unique molecular features of cerebrospinal fluid (CSF) of nonsmall cell lung cancer (NSCLC) patients with leptomeningeal metastasis (LM), suggesting establishing CSF as a better liquid biopsy in clinical practices. We performed next-generation panel sequencing of primary tumor tissue, plasma, and CSF from 131 NSCLC patients with LM and observed high somatic copy number variations (CNV) in CSF of NSCLC patients with LM. The status of EGFR-activating mutations was highly concordant between CSF, plasma, and primary tumors. ALK translocation was detected in 8.3% of tumor tissues but only 2.4% in CSF and 2.7% in plasma. Others such as ROS1 rearrangement, RET fusion, HER2 mutation, NTRK1 fusion, and BRAF V600E mutation were detected in 7.9% of CSF and 11.1% of tumor tissues but only 4% in plasma. Our study has shed light on the unique genomic variations of CSF and demonstrated that CSF might represent better liquid biopsy for NSCLC patients with LM.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1794
Author(s):  
Alice Indini ◽  
Erika Rijavec ◽  
Francesco Grossi

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death (PD)-1 protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, have revolutionized the management of patients with advanced non-small cell lung cancer (NSCLC). Unfortunately, only a small portion of NSCLC patients respond to these agents. Furthermore, although immunotherapy is usually well tolerated, some patients experience severe immune-related adverse events (irAEs). Liquid biopsy is a non-invasive diagnostic procedure involving the isolation of circulating biomarkers, such as circulating tumor cells (CTC), cell-free DNA (cfDNA), and microRNAs (miRNAs). Thanks to recent advances in technologies, such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR), liquid biopsy has become a useful tool to provide baseline information on the tumor, and to monitor response to treatments. This review highlights the potential role of liquid biomarkers in the selection of NSCLC patients who could respond to immunotherapy, and in the identification of patients who are most likely to experience irAEs, in order to guide improvements in care.


2021 ◽  
Vol 16 (2) ◽  
pp. 207-214
Author(s):  
Chi-Lu Chiang ◽  
Cheng-Chia Lee ◽  
Hsu-Ching Huang ◽  
Chia-Hung Wu ◽  
Yi-Chen Yeh ◽  
...  

2020 ◽  
Author(s):  
Meng Liang ◽  
Linlin Wang ◽  
Chuanhua Cao ◽  
Shimao Song ◽  
feng wu

Abstract Background: LncRNA SNHG10 has been reported to be an oncogenic lncRNA in liver cancer. However, its roles in non-small cell lung cancer (NSCLC) remains unknown. Methods: Tumor and paired non-tumor tissues were harvested from 62 NSCLC patients. RT-qPCR was used to detect the expression of SNHG10 and miR-21 in tissues. Overexpression experiments were used to evaluate the interaction between SNHG10 and miR-21 in NSCLC cells. CCK-8 assay was used to detect the cell proliferation. Results: We observed the expression of SNHG10 was down-regulated in non-small cell lung cancer (NSCLC) compared with that in non-tumor tissues. Moreover, we found that high expression levels of SNHG10 predicted favorable survival of NSCLC patients, and the expression of miR-21 were increased in NSCLC and inversely correlated with SNHG10 expression. In NSCLC cells, overexpression of SNHG10 resulted in increased miR-21 gene methylation and decreased miR-21 expression. Moreover, overexpression of SNHG10 attenuated the enhancing effect of miR-21 overexpression on cell proliferation. Conclusions: SNHG10 may involve in NSCLC cell proliferation by regulating the miR-21 gene methylation.


2020 ◽  
Author(s):  
Meng Liang ◽  
Linlin Wang ◽  
Chuanhua Cao ◽  
Shimao Song ◽  
feng wu

Abstract Background: LncRNA SNHG10 has been reported to be an oncogenic lncRNA in liver cancer. However, its roles in non-small cell lung cancer (NSCLC) remains unknown. Methods: Tumor and paired non-tumor tissues were harvested from 62 NSCLC patients. RT-qPCR was used to detected the expression of SNHG10 and miR-21 in tissues. Overexpression experiments were used to evaluate the interaction between SNHG10 or miR-21 in NSCLC cells. CCK-8 assay was used to detect the cell proliferation. Results: We observed the expression of SNHG10 was down-regulated in non-small cell lung cancer (NSCLC) compared with that in non-tumor tissues. Moreover, we found that high expression levels of SNHG10 predicted favorable survival of NSCLC patients, and the expression of miR-21 were increased in NSCLC and inversely correlated with SNHG10 expression. In NSCLC cells, overexpression of SNHG10 resulted in increased miR-21 gene methylation and decreased miR-21 expression. Moreover, overexpression of SNHG10 attenuated the enhancing effect of miR-21 overexpression on cell proliferation. Conclusions: SNHG10 may involve in NSCLC cell proliferation by regulating the miR-21 gene methylation.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 9022-9022 ◽  
Author(s):  
Ben-Yuan Jiang ◽  
Yangsi LI ◽  
Shaokun Chuai ◽  
Zhou Zhang ◽  
Jin-Ji Yang ◽  
...  

9022 Background: In current clinical setting, NSCLC patients harboring specific driver mutation were usually treated guiding by prior profiling of the primary tumor when developed to brain metastasis. Some studies have shown that circulating tumor DNA (ctDNA) derived from cerebrospinal fluid (CSF) can reveal unique genomic alterations present in brain malignancies. We assessed CSF as a liquid biopsy media and compared to matched plasma. Methods: We performed capture-based ultra deep sequencing on ctDNA derived from matched CSF, plasma of 40 non-small cell lung cancer (NSCLC) patients with suspected leptomeningeal carcinomatosis (LC) using a panel consisting of 168 genes. Results: Among the 40 suspected LC cases, 35 were confirmed to have LC, ctDNA in CSF from the 5 non-LC cases are all undetectable. Circulating tumor DNA was detected in 93.8% of CSF and 66.7% of plasma. We compared mutation profiles and identified 86 and 46 SNVs from CSF and plasma, respectively, with 42 SNVs overlapping. Furthermore, ctDNA from CSF revealed many copy number variations (CNVs) that were not detected from plasma (189 CNVs vs. 3 CNVs). The average maximum allelic fraction (AF) of CSF ctDNA is significantly higher than in plasma (56.7% vs. 4.4% p < 10^-6). Twenty-eight patients were pre-treated with EGFR-TKIs and developed subsequent resistance. EGFR T790M and MET amplification were detected in 21% and 39% in CSF, respectively, showing a unique resistance profile among leptomeningeal metastases patients compared to the general population. Interestingly, 60% of CSF samples harbor TP53 loss of heterozygosity, only 11% of which were detected in the matched plasma samples. Such heterogeneity may reflect unique biological themes for brain metastatic tumor sub-clones. Furthermore, 26 patients received molecular targeted therapy based on the results from CSF, and 23 reported alleviation of symptoms at subsequent evaluations. Conclusions: Collectively, our data reveal that ctDNA derived from CSF provides a unique and more comprehensive characterization of genomic alterations of leptomeningeal carcinomatosis than plasma, supporting the importance of CSF as a liquid biopsy media.


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. 9095-9095 ◽  
Author(s):  
Laura Mezquita ◽  
Cecile Jovelet ◽  
Ludovic Lacroix ◽  
David Planchard ◽  
Gonzalo Recondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document