scholarly journals The Anti-Colon Cancer Effects of Essential Oil of Curcuma phaeocaulis Through Tumour Vessel Normalisation

2021 ◽  
Vol 11 ◽  
Author(s):  
Yewen Feng ◽  
Lu Deng ◽  
Hengrui Guo ◽  
Yumin Zhao ◽  
Fu Peng ◽  
...  

BackgroundNormalising tumour vessels had become a significant research focus in tumour treatment research in recent years. Curcumae rhizoma (CR) is an essential plant in traditional Chinese medicine as it promotes blood circulation and removes blood stasis. Similarly, CR improves local blood circulation.PurposeWe explored the anti-colon cancer effects of essential oil from CR (OCR) by investigating its role in normalising tumour vessels. We also provided a basis for research and development into new anti-cancer drugs.MethodsWe used colon cancer as a research focus to investigate OCR. We established an in vitro co-culture model of colon cancer cells and human umbilical vein endothelial cells (HUVEC). We also established an in vivo subcutaneous implant colon cancer model in nude mice. These studies allowed us to evaluate the comprehensive effects of OCR in in vivo and in vitro colon cancer and its role in normalising tumour blood vessels.ResultsIn vitro, we found that OCR inhibited Human colon cancer cells (HCT116) and HUVEC cell proliferation and inhibited vascular endothelial growth factor-a (VEGFa) mRNA and protein expression in HUVECs in a co-culture system. Our in vivo studies showed that OCR inhibited colon cancer tumour growth, reduced angiogenesis in tumours and increased vascular endothelial (VE)-cadherin and pericyte coverage in tumour vessels.ConclusionsOCR inhibited colon cancer growth both in in vivo and in vitro models, reduced angiogenesis in tumours, improved tumour vessel structures and normalised tumour vessels.

2013 ◽  
Vol 144 (5) ◽  
pp. S-166-S-167
Author(s):  
Karen Boland ◽  
Caoimhin Concannon ◽  
Niamh McCawley ◽  
Elaine W. Kay ◽  
Deborah McNamara ◽  
...  

2019 ◽  
Vol 8 (12) ◽  
pp. 5662-5672 ◽  
Author(s):  
Sonoko Chikamatsu ◽  
Ken Saijo ◽  
Hiroo Imai ◽  
Koichi Narita ◽  
Yoshifumi Kawamura ◽  
...  

Author(s):  
Junhui Yu ◽  
Kui Yang ◽  
Jianbao Zheng ◽  
Wei Zhao ◽  
Xuejun Sun

Abstract The tumor-suppressive role of Farnesoid X receptor (FXR) in colorectal tumorigenesis supports restoring FXR expression as a novel therapeutic strategy. However, the complicated signaling network and tumor heterogeneity hinder the effectiveness of FXR agonists in the clinical setting. These difficulties highlight the importance of identifying drug combinations with potency and specificity to enhance the antitumor effects of FXR agonists. In this study, we found that the β-catenin level affected the antitumor effects of the FXR agonist OCA on colon cancer cells. Mechanistic studies identified a novel FXR/β-catenin complex in colon cancer cells. Furthermore, the depletion of β-catenin expedited FXR nuclear localization and enhanced its occupancy of the SHP promoter and thereby sensitized colon cancer cells to OCA. Furthermore, we utilized a drug combination study and identified that the antiparasitic drug nitazoxanide (NTZ) abrogated β-catenin expression and acted synergistically with OCA in colon cancer cells. The combination of OCA plus NTZ exerts synergistic tumor inhibition in CRC both in vitro and in vivo by cooperatively upregulating SHP expression. In conclusion, our study offers useful evidence for the clinical use of FXR agonists combined with β-catenin inhibitors in combating CRC.


Author(s):  
Longgang Wang ◽  
Jinxiang Guo ◽  
Jin Zhou ◽  
Dongyang Wang ◽  
Xiuwen Kang ◽  
...  

Abstract Background Colon cancer represents one of the leading causes of gastrointestinal tumors in industrialized countries, and its incidence appears to be increasing at an alarming rate. Accumulating evidence has unveiled the contributory roles of cancer stem cells (CSCs) in tumorigenicity, recurrence, and metastases. The functions of NF-kappa B (NF-κB) activation on cancer cell survival, including colon cancer cells have encouraged us to study the role of NF-κB in the maintenance of CSCs in colon cancer. Methods Tumor samples and matched normal samples were obtained from 35 colon cancer cases. CSCs were isolated from human colon cancer cell lines, where the stemness of the cells was evaluated by cell viability, colony-forming, spheroid-forming, invasion, migration, and apoptosis assays. NF-κB activation was then performed in subcutaneous tumor models of CSCs by injecting lipopolysaccharides (LPS) i.p. Results We found that NF-κB activation could reduce the expression of miR-195-5p and miR-497-5p, where these two miRNAs were determined to be downregulated in colon cancer tissues, cultured colon CSCs, and LPS-injected subcutaneous tumor models. Elevation of miR-195-5p and miR-497-5p levels by their specific mimic could ablate the effects of NF-κB on the stemness of colon cancer cells in vivo and in vitro, suggesting that NF-κB could maintain the stemness of colon cancer cells by downregulating miR-195-5p/497–5p. MCM2 was validated as the target gene of miR-195-5p and miR-497-5p in cultured colon CSCs. Overexpression of MCM2 was shown to restore the stemness of colon cancer cells in the presence of miR-195-5p and miR-497-5p, suggesting that miR-195-5p and miR-497-5p could impair the stemness of colon cancer cells by targeting MCM2 in vivo and in vitro. Conclusions Our work demonstrates that the restoration of miR-195-5p and miR-497-5p may be a therapeutic strategy for colon cancer treatment in relation to NF-κB activation.


2008 ◽  
Vol 15 (1) ◽  
pp. 201-207 ◽  
Author(s):  
Guiying Zhang ◽  
Ting Liu ◽  
Yong-Heng Chen ◽  
Yuxiang Chen ◽  
Meihua Xu ◽  
...  

2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 442-442 ◽  
Author(s):  
Ping Wei ◽  
Dawei Li ◽  
Ye Xu ◽  
Sanjun Cai

442 Background: We previously identified aberrant overexpression of TPX2 in colon cancer by using a genome-wide gene expression profiling analysis. Here, we aimed to investigate its expression pattern, clinical significance, and biological function in colon cancer. Methods: The expression of TPX2 was analyzed in human colon cancer cell lines and tumor samples. The effect of TPX2 on cell proliferation, tumorigenesis and metastasis was examined in vitro and in vivo. Results: Overexpression of TPX2 was found in metastatic lesion of colon cancer, significantly higher than primary cancererous tissue and normal colon mucosa. Overexpression of TPX2 was significantly associated with the clinical staging, vessel invasion and metastasis. In survival analyses, patients with TPX2 expression had worse overall survival and metastasis free survival, suggesting that deregulation of TPX2 may contribute to the metastasis of colon cancer. Consistently, Silencing TPX2 inhibited proliferation and tumorigenicity of colon cancer cells both in vitro and in vivo. Strikingly, we found that TPX2 knockdown significantly attenuated the migration and invasion ability of colon cancer cells, which was further shown to be mechanistically associated with AKT mediated MMP9 activity. Conclusions: These findings suggest that TPX2 plays an important role in promoting tumorigenesis and metastasis of human colon cancer and may represent a novel prognostic biomarker and therapeutic target for the disease.


Sign in / Sign up

Export Citation Format

Share Document