scholarly journals Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells

2021 ◽  
Vol 11 ◽  
Author(s):  
Vivek Kumar Soni ◽  
Arundhati Mehta ◽  
Yashwant Kumar Ratre ◽  
Vikas Chandra ◽  
Dhananjay Shukla ◽  
...  

Along with direct anticancer activity, curcumin hinders the onset of chemoresistance. Among many, high glucose condition is a key driving factor for chemoresistance. However, the ability of curcumin remains unexplored against high glucose-induced chemoresistance. Moreover, chemoresistance is major hindrance in effective clinical management of liver cancer. Using hepatic carcinoma HepG2 cells, the present investigation demonstrates that high glucose induces chemoresistance, which is averted by the simultaneous presence of curcumin. Curcumin obviated the hyperglycemia-induced modulations like elevated glucose consumption, lactate production, and extracellular acidification, and diminished nitric oxide and reactive oxygen species (ROS) production. Modulated molecular regulators are suggested to play a crucial role as curcumin pretreatment also prevented the onset of chemoresistance by high glucose. High glucose instigated suppression in the intracellular accumulation of anticancer drug doxorubicin and drug-induced chromatin compactness along with declined expression of drug efflux pump MDR-1 and transcription factors and signal transducers governing the survival, aggressiveness, and apoptotic cell death (p53, HIF-1α, mTOR, MYC, STAT3). Curcumin alleviated the suppression of drug retention and nuclear condensation along with hindering the high glucose-induced alterations in transcription factors and signal transducers. High glucose-driven resistance in cancer cells was associated with elevated expression of metabolic enzymes HKII, PFK1, GAPDH, PKM2, LDH-A, IDH3A, and FASN. Metabolite transporters and receptors (GLUT-1, MCT-1, MCT-4, and HCAR-1) were also found upregulated in high glucose exposed HepG2 cells. Curcumin inhibited the elevated expression of these enzymes, transporters, and receptors in cancer cells. Curcumin also uplifted the SDH expression, which was inhibited in high glucose condition. Taken together, the findings of the present investigation first time demonstrate the ability of curcumin against high glucose-induced chemoresistance, along with its molecular mechanism. This will have implication in therapeutic management of malignancies in diabetic conditions.

2021 ◽  
Vol 22 (13) ◽  
pp. 6902
Author(s):  
Alina D. Nikotina ◽  
Snezhana A. Vladimirova ◽  
Elena Y. Komarova ◽  
Dmitry Alexeev ◽  
Sergey Efremov ◽  
...  

Hyperglycemia may contribute to the progression of carcinomas by triggering epithelial-to-mesenchymal transition (EMT). Some proteostasis systems are involved in metastasis; in this paper, we sought to explore the mechanism of Hsp70 chaperone in EMT. We showed that knockdown of Hsp70 reduced cell migration capacity concomitantly with levels of mRNA of the Slug, Snail, and Twist markers of EMT, in colon cancer cells incubated in high glucose medium. Conversely, treatment of cells with Hsp70 inducer U-133 were found to elevate cell motility, along with the other EMT markers. To prove that inhibiting Hsp70 may reduce EMT efficiency, we treated cells with a CL-43 inhibitor of the HSF1 transcription factor, which lowered Hsp70 and HSF1 content in the control and induced EMT in carcinoma cells. Importantly, CL-43 reduced migration capacity, EMT-linked transcription factors, and increased content of epithelial marker E-cadherin in colon cancer cells of three lines, including one derived from a clinical sample. To prove that Hsp70 chaperone should be targeted when inhibiting the EMT pathway, we treated cancer cells with 2-phenylethynesulfonamide (PES) and demonstrated that the compound inhibited substrate-binding capacity of Hsp70. Furthermore, PES suppressed EMT features, cell motility, and expression of specific transcription factors. In conclusion, the Hsp70 chaperone machine efficiently protects mechanisms of the EMT, and the safe inhibitors of the chaperone are needed to hamper metastasis at its initial stage.


2017 ◽  
Vol 35 (7) ◽  
pp. 407-413 ◽  
Author(s):  
Elaheh Zafarvahedian ◽  
Azam Roohi ◽  
Mohammad Reza Sepand ◽  
Seyed Nasser Ostad ◽  
Mohammad Hossein Ghahremani

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miao Chen ◽  
Dian Jing ◽  
Rui Ye ◽  
Jianru Yi ◽  
Zhihe Zhao

Abstract Background Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. Methods We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. Results Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. Conclusion In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.


2021 ◽  
Vol 28 ◽  
Author(s):  
Olga Simó-Servat ◽  
Hugo Ramos ◽  
Patricia Bogdanov ◽  
Marta García-Ramírez ◽  
Jordi Huerta ◽  
...  

Background: Ezrin, radixin, and moesin (the ERM complex) interact directly with membrane proteins regulating their attachment to actin filaments. ERM protein activation modifies cytoskeleton organization and alters the endothelial barrier function, thus favoring vascular leakage. However, little is known regarding the role of ERM proteins in diabetic retinopathy (DR). Objective: This study aimed to examine whether overexpression of the ERM complex exists in db/db mice and its main regulating factors. Methods: 9 male db/db mice and 9 male db/+ aged 14 weeks were analyzed. ERM proteins were assessed by western blot and by immunohistochemistry. Vascular leakage was determined by the Evans blue method. To assess ERM regulation, HRECs were cultured in a medium containing 5.5 mM D-glucose (mimicking physiological conditions) and 25 mM D-glucose (mimicking hyperglycemia that occurs in diabetic patients). Moreover, treatment with TNF-α, IL-1β, or VEGF was added to a high glucose condition. The expression of ERM proteins was quantified by RT-PCR. Cell permeability was evaluated by measuring movements of FITC-dextran. Results: A significant increase of ERM in diabetic mice in comparison with non-diabetic mice was observed. A high glucose condition alone did not have any effect on ERM expression. However, TNF-α and IL-1β induced a significant increase in ERM proteins. Conclusion: The increase of ERM proteins induced by diabetes could be one of the mechanisms involved in vascular leakage and could be considered as a therapeutic target. Moreover, the upregulation of the ERM complex by diabetes is induced by inflammatory mediators rather than by high glucose itself.


1987 ◽  
Vol 19 (07) ◽  
pp. 316-318 ◽  
Author(s):  
N. Watanabe ◽  
M. Kobayashi ◽  
M. Iwasaki ◽  
O. Ishibashi ◽  
Y. Takata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document