scholarly journals MiR-1224 Acts as a Prognostic Biomarker and Inhibits the Progression of Gastric Cancer by Targeting SATB1

2021 ◽  
Vol 11 ◽  
Author(s):  
Guo-Dong Han ◽  
Yuan Sun ◽  
Hong-Xia Hui ◽  
Ming-Yue Tao ◽  
Yang-Qing Liu ◽  
...  

ObjectiveMiR-1224 has been reported to exhibit abnormal expression in several tumors. However, the expressing pattern and roles of miR-1224 in gastric cancer (GC) remain unclear. Our current research aimed to explore the potential involvement of miR-1224 in the GC progression.Materials and MethodsThe expression of miR-1224 was examined in tissue samples of 128 GC patients and cell lines by RT-PCR. Besides, the associations of miR-1224 expressions with clinicopathologic features and prognosis of GC patients were analyzed. Then, the possible influences of miR-1224 on cell proliferation and cell migration were determined. Afterward, the molecular target of miR-1224 was identified using bioinformatics assays and confirmed experimentally. Finally, RT-PCR and Western blot assays were performed to investigate the effect of the abnormal miR-1224 expression on the EMT and Wnt/β-catenin pathway.ResultsmiR-1224 was lowly expressed in the GC specimens and cell lines due to T classification and TNM stage. Survival assays demonstrated that GC patients with low expressions of miR-1224 possessed poor overall survivals. Moreover, in vitro and in vivo assays revealed that the overexpression of miR-1224 inhibited cell proliferation, migration, and invasion in GC cells. SATB homeobox 1 (SATB1) was verified as a direct target of miR-1224 in GC. Furthermore, β-catenin and c-myc were significantly inhibited in miR-1224-overexpression cells.ConclusionsOur findings highlight the potential of miR-1224 as a therapeutic target and novel biomarker for GC patients

2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Xuan Zhang ◽  
Yi Zhang ◽  
Zhongyuan He ◽  
Kai Yin ◽  
Bowen Li ◽  
...  

Abstract An increasing number of studies indicate that adrenergic signalling plays a fundamental role in chronic stress-induced tumour progression and metastasis. However, its function in gastric cancer (GC) and its potential mechanisms remain unknown. The expression levels of β-adrenergic receptor (ADRB) in GC cell lines were examined by using real-time polymerase chain reaction (RT-PCR) and western blotting. The effects of β2 adrenergic receptor (ADRB2) activation and blockade were investigated in vitro in GC cells by using proliferation, migration, invasion, cell cycle and apoptosis assays. Chronic restraint stress (CRS) increased the plasma levels of catecholamines and cortisol and also induced progression and metastasis of GC in vivo. Furthermore, immunohistochemical staining and a TUNEL assay were employed to observe the regulation of cell viability in vivo. The expression levels of ADRB2 in 100 human GC samples were measured by RT-PCR and immunohistochemistry. The stress hormones epinephrine and norepinephrine significantly accelerated GC cell proliferation, invasion and viability in culture, as well as tumour growth in vivo. These effects were reversed by the ADRB antagonists propranolol and ICI118,551 (an ADRB2-specific antagonist). Moreover, the selective ADRB1 antagonist atenolol had almost no effect on tumour cell proliferation and invasion in vitro and in vivo. ADRB2 antagonists suppressed proliferation, invasion and metastasis by inhibiting the ERK1/2-JNK-MAPK pathway and transcription factors, such as NF-κB, AP-1, CREB and STAT3. Analysis of xenograft models using GC cells revealed that ADRB2 antagonists significantly inhibited tumour growth and metastasis, and chronic stress antagonized these inhibitory effects. In addition, chronic stress increased the expression of VEGF, MMP-2, MMP-7 and MMP-9 in transplanted tumour tissue, and catecholamine hormones enhanced the expression of metastasis-related proteins. The expression of ADRB2 was upregulated in tumour tissues and positively correlated with tumour size, histological grade, lymph node metastasis and clinical stage in human GC samples. Stress hormone-induced activation of the ADRB2 signalling pathway plays a crucial role in GC progression and metastasis. These findings indicate that ADRB2 signalling regulates GC progression and suggest β2 blockade as a novel strategy to complement existing therapies for GC.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Xin Chen ◽  
Bo Yue ◽  
Changming Zhang ◽  
Meihao Qi ◽  
Jianhua Qiu ◽  
...  

The aim of the present study was to explore the mechanism through which miR-130a-3p affects the viability, proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC). Tissue samples were collected from the hospital department. NPC cell lines were purchased to conduct the in vitro and in vivo assays. A series of biological assays including MTT, Transwell, and wound healing assays were conducted to investigate the effects of miR-130a-3p and BACH2 on NPC cells. MiR-130a-3p was down-regulated in both NPC tissues and cell lines, whereas BACH2 was up-regulated in both tissues and cell lines. MiR-130a-3p overexpression inhibited NPC cell viability, proliferation, migration, and invasion but promoted cell apoptosis. The converse was true of BACH2, the down-regulation of which could inhibit the corresponding cell abilities and promote apoptosis of NPC cells. The target relationship between miR-130a-3p and BACH2 was confirmed. The epithelial–mesenchymal transition (EMT) pathway was also influenced by miR-130a-3p down-regulation. In conclusion, miR-130a-3p could bind to BACH2, inhibit NPC cell abilities, and promote cell apoptosis.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2021 ◽  
Author(s):  
Ji-Ping Hou ◽  
Xue-Bo Men ◽  
Lian-Ying Yang ◽  
En-Kun Han ◽  
Chun-Qi Han ◽  
...  

Abstract Objective This study was aimed at investigating the involvement of CircCCT3 in PC and study its interactions and functioning during the PC progression in vitro and in vivo by the use of molecular biology and bioinformatic methods.Methods The expressions of CircCCT3 and miR-613 in pancreatic carcinoma tissues and cell lines were evaluated by quantitative realtime PCR .The relationship between clinical pathologic features as well as survival rate and CircCCT3 expression was analyzed with Chi-square test and Kaplan–Meier method. CCK-8, wound healing , transwell assays and FITC-AnnexinV/PI assay were used to assess cell proliferation, migration, invasion and apoptosis after CircCCT3 overexpression or downregulation. Dual-Luciferase reporterassay, RNA immunoprecipitation (RIP) ,RNA pull down and fluorescence in situ hybridization(FISH) assays were performed to validate the potential interaction of CircCCT3, miR-613 and VEGFA.Nude mouse xenograft tumor assay was used to detect CircCCT3 effects on pancreatic tumorigenesis in vivo.Western blotting analysis was performed to examine the VEGFA and VEGFR2 protein expressions following.Results CircCCT3 expression was significantly increased in PC tissues and cell lines. CircCCT3 expression was negatively correlated with miR-613 expression. Moreover, it was found that CircCCT3 promote cell proliferation, migration, invasion and inhibited cell apoptosis in PC cells. CircCCT3 acted as a sponge for miR-613 to facilitate VEGFA and VEGFR2 expression. si-CirCCT3also inhibited tumor growth of PC in nude mice.si-CircCCT3 reduced VEGFA and VEGFR2 expression, whereas overexpression of CircCCT3 increased VEGFA and VEGFR2 expression.Conclusions Increased CircCCT3 suggests a poor prognosis in PC patients and promotes the migration and invasion through targeting VEGFA/VEGFR2 signaling. CircCCT3 may serve as a potential and promising therapeutic target for PC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biyong Deng ◽  
Runsang Pan ◽  
Xin Ou ◽  
Taizhe Wang ◽  
Weiguo Wang ◽  
...  

Purpose. Osteosarcoma (Os) is the most frequent malignant tumor of the bone in the pediatric age group, and accumulating evidences show that lncRNAs play a key role in the development of Os. Thus, we investigated the role of RBM5-AS1 and its molecular mechanism. Methods. The expression of RBM5-AS1 in Os tissues and cell lines was detected by real-time polymerase chain reaction (QPCR). The effect of RBM5-AS1 on the proliferation of Os cells was detected using CCK8 assays and flow cytometry. The effect of RBM5-AS1 on the migration and invasion of Os cells was detected by transwell assays. And we performed QPCR and western blotting assays to investigate the relationship between RBM5-AS1 and RBM5. Finally, western blotting assays were performed to explore the mechanism of RBM5. Results. LncRNA RBM5-AS1 was overexpressed in the Os tissues and cell lines. And lncRNA RBM5-AS1 promoted Os cell proliferation, migration, and invasion in vitro and tumor growth in vivo. LncRNA RBM5-AS1 targets RBM5 in Os cells. Conclusion. To sum up, the results showed that lncRNA RBM5-AS1 promotes cell proliferation, migration, and invasion in Os.


2020 ◽  
Vol 43 (6) ◽  
pp. 1017-1033 ◽  
Author(s):  
Yizhi Xiao ◽  
Side Liu ◽  
Jiaying Li ◽  
Weiyu Dai ◽  
Weimei Tang ◽  
...  

Abstract Purpose Growing evidence indicates that aberrant expression of microRNAs contributes to tumor development. However, the biological role of microRNA-4490 (miR-4490) in gastric cancer (GC) remains to be clarified. Methods To explore the function of miR-4490 in GC, we performed colony formation, EdU incorporation, qRT-PCR, Western blotting, in situ hybridization (ISH), immunohistochemistry (IHC), flow cytometry, ChIP and dual-luciferase reporter assays. In addition, the growth, migration and invasion capacities of GC cells were evaluated. Results We found that miR-4490 was significantly downregulated in primary GC samples and in GC-derived cell lines compared with normal controls, and that this expression level was negatively correlated with GC malignancy. Exogenous miR-4490 expression not only reduced cell cycle progression and proliferation, but also significantly inhibited GC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, we found that miR-4490 directly targets USP22, which mediates inhibition of GC cell proliferation and EMT-induced metastasis in vitro and in vivo. Moreover, we found through luciferase and ChIP assays that transcription factor POU2F1 can directly bind to POU2F1 binding sites within the miR-4490 and USP22 promoters and, by doing so, modulate their transcription. Spearman’s correlation analysis revealed a positive correlation between USP22 and POU2F1 expression and negative correlations between miR-4490 and USP22 as well as miR-4490 and POU2F1 expression in primary GC tissues. Conclusion Based on our results we conclude that miR-4490 acts as a tumor suppressor, and that the POU2F1/miR-4490/USP22 axis plays an important role in the regulation of growth, invasion and EMT of GC cells.


2017 ◽  
Vol 44 (2) ◽  
pp. 567-580 ◽  
Author(s):  
Wei Zhang ◽  
Weitang Yuan ◽  
Junmin Song ◽  
Shijun Wang ◽  
Xiaoming Gu

Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) regulate diverse cellular processes and cancer progression. Whether lncRNAs play any functional role in colorectal carcinoma (CRC) remains largely unknown. The aim of this study was to investigate the role of lncRNA CPS1 intronic transcript 1 (CPS1-IT1) in CRC. Methods: Expression of CPS1-IT1 was initially assessed in human CRC tissues and in a series of CRC cell lines. The correlations between CPS1-IT1 levels and survival outcomes were analyzed to elucidate the clinical significance of CPS1-IT1 in CRC. The underlying mechanisms of CPS1-IT1 in CRC were analyzed through in vitro and in vivo functional assays. Results: Expression of CPS1-IT1 was significantly decreased in CRC tissues and cell lines, and patients with low CPS1-IT1 expression had poor survival outcomes. The results of in vitro assays revealed that CPS1-IT1 significantly reduced cell proliferation, migration and invasion capacities and accelerated cell apoptosis, thereby suppressing epithelial-mesenchymal transition (EMT). An in vivo animal model also demonstrated the tumor-suppressive role of CPS1-IT1. Conclusion: In this study, we found that CPS1-IT1 has a tumor-suppressive role in CRC. Our data suggest that CPS1-IT1 could be used as a new prognostic biomarker and therapeutic target for CRC.


2020 ◽  
Author(s):  
LiJun Tian ◽  
Hong-Zhi Liu ◽  
Qiang Zhang ◽  
Dian-Zhong Geng ◽  
Jing Yang ◽  
...  

Abstract Background: Apelin is an emerging endogenous ligand, which is involved in proliferation and angiogenesis in certain cancers. However, few studies have reported its functions and underlying mechanisms in human gastric cancer (GC). Therefore, the present study aimed to investigate the effect of Apelin expression in human GC and the underlying mechanisms of Apelin in the promotion of proliferation both in vitro and in vivo.Methods: A total of 178 patients diagnosed with GC under postoperative care were enrolled for the study to investigate clinicopathological and immunohistochemical factors of Apelin expression. Survival of patients was analyzed using the Kaplan-Meier method and Cox regression model. We adopted quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), western blot and ELISA to analyze human GC specimens and cell lines. The role and mechanisms of Apelin were evaluated by performing in vitro and in vivo experiments to analyze exogenous Apelin and its overexpression in human GC cells. Results: The expression of Apelin was higher in human gastric cancer cells than in adjacent normal tissues. Apelin, which was overexpressed in vessel invasion (P <0.01), lymph node metastasis (P <0.01), late-staged tumor (T) status (P <0.05), pathological type (P <0.05) and nerve invasion (P <0.05), also exhibited a positive correlation with vascular endothelial growth factor (VEGF). Apelin overexpression or exogenous Apelin activated downstream of ERK/Cyclin D1/MMP-9 signaling pathway to promote MGC-803 cell proliferation and invasion in vitro. Apelin overexpression promoted angiogenesis aiming at accelerating growth of subcutaneous xenograft in vivo.Conclusions: This study has elucidated the relationship between Apelin and its clinicopathological features in human GC, and the role of Apelin in tumor cell proliferation in human GC cell lines. This is the first study to elucidate underlying mechanisms of Apelin in the proliferation of GC. Apelin can be a potential therapeutic target for human GC.


Sign in / Sign up

Export Citation Format

Share Document