scholarly journals circRNAs: Insight Into Their Role in Tumor-Associated Macrophages

2021 ◽  
Vol 11 ◽  
Author(s):  
Saili Duan ◽  
Shan Wang ◽  
Tao Huang ◽  
Junpu Wang ◽  
Xiaoqing Yuan

Currently, it is well known that the tumor microenvironment not only provides energy support for tumor growth but also regulates tumor signaling pathways and promotes the proliferation, invasion, metastasis, and drug resistance of tumor cells. The tumor microenvironment, especially the function and mechanism of tumor-associated macrophages (TAMs), has attracted great attention. TAMs are the most common immune cells in the tumor microenvironment and play a vital role in the occurrence and development of tumors. circular RNA (circRNA) is a unique, widespread, and stable form of non-coding RNA (ncRNA), but little is known about the role of circRNAs in TAMs or how TAMs affect circRNAs. In this review, we summarize the specific manifestations of circRNAs that affect the tumor-associated macrophages and play a significant role in tumor progression. This review helps improve our understanding of the association between circRNAs and TAMs, thereby promoting the development and progress of potential clinical targeted therapies.

2018 ◽  
Vol 45 (1) ◽  
pp. 356-365 ◽  
Author(s):  
Xiaoming Zhong ◽  
Bin Chen ◽  
Zhiwen Yang

Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the tumor microenvironment, and they play a pivotal role in prompting the various tumor growth. However, the role of TAMs in colorectal carcinoma (CRC) is controversial, because a few papers report that TAMs is beneficial to CRC patients. In this review, we discuss the good or bad roles of TAMs in CRC progression. Interestingly, recent studies provide strong evidence that TAMs facilitate CRC growth, but do not exert tumor suppressive activities. TAMs can stimulate CRC growth by altering extracellular matrix remodeling, tumor metabolism, angiogenesis, as well as the tumor microenvironment. Therefore, TAMs could serve as a target for CRC therapeutic treatment.


2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


2019 ◽  
Vol 8 (10) ◽  
pp. 4709-4721 ◽  
Author(s):  
Jing Wang ◽  
Danyang Li ◽  
Huaixing Cang ◽  
Bo Guo

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Lifeng Ding ◽  
Ruyue Wang ◽  
Danyang Shen ◽  
Sheng Cheng ◽  
Huan Wang ◽  
...  

AbstractProstate cancer is one of the most prevalent forms of cancer around the world. Androgen-deprivation treatment and chemotherapy are the curative approaches used to suppress prostate cancer progression. However, drug resistance is extensively and hard to overcome even though remarkable progress has been made in recent decades. Noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, are a group of cellular RNAs which participate in various cellular processes and diseases. Recently, accumulating evidence has highlighted the vital role of non-coding RNA in the development of drug resistance in prostate cancer. In this review, we summarize the important roles of these three classes of noncoding RNA in drug resistance and the potential therapeutic applications in this disease.


2020 ◽  
Vol 28 ◽  
Author(s):  
RamaRao Malla ◽  
Mohammad Amjad Kamal

: The breast tumor microenvironment (TME) promotes drug resistance through an elaborated interaction of TME components mediated by reactive oxygen species (ROS). Despite a massive accumulation of data concerning the targeting the ROS, but little is known about the ROS-responsive nanomedicine for targeting breast TME. This review submits the ROS landscape in breast TME, including ROS biology, ROS mediated carcinogenesis, reprogramming of stromal and immune cells of TME. We also discussed ROS-based precision strategies for imaging TME, including molecular imaging techniques with advanced probes, multiplexed methods, and multi-omic profiling strategies. ROS-responsive nanomedicine also describes various therapies, such as chemo-dynamic, photodynamic, photothermal, sono-dynamic, immune, and gene therapy for BC. We expound ROS-responsive primary delivery systems for chemotherapeutics, phytochemicals, and immunotherapeutics. This review also presents recent updates on nano-theranostics for simultaneous diagnosis and treatment of BCs. We assume that review on this advancing field will be beneficial to the development of ROS-based nanotheranostics for BC.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ling Wei ◽  
Xingwu Wang ◽  
Liyan Lv ◽  
Jibing Liu ◽  
Huaixin Xing ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Zou ◽  
Zheng ◽  
Deng ◽  
Yang ◽  
Xie ◽  
...  

Circular RNA CDR1as/ciRS-7 functions as an oncogenic regulator in various cancers. However, there has been a lack of systematic and comprehensive analysis to further elucidate its underlying role in cancer. In the current study, we firstly performed a bioinformatics analysis of CDR1as among 868 cancer samples by using RNA-seq datasets of the MiOncoCirc database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), CIBERSORT, Estimating the Proportion of Immune and Cancer cells (EPIC), and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were applied to investigate the underlying functions and pathways. Functional enrichment analysis suggested that CDR1as has roles associated with angiogenesis, extracellular matrix (ECM) organization, integrin binding, and collagen binding. Moreover, pathway analysis indicated that it may regulate the TGF-β signaling pathway and ECM-receptor interaction. Therefore, we used CIBERSORT, EPIC, and the ESTIMATE algorithm to investigate the association between CDR1as expression and the tumor microenvironment. Our data strongly suggest that CDR1as may play a specific role in immune and stromal cell infiltration in tumor tissue, especially those of CD8+ T cells, activated NK cells, M2 macrophages, cancer-associated fibroblasts (CAFs) and endothelial cells. Generally, systematic and comprehensive analyses of CDR1as were conducted to shed light on its underlying pro-cancerous mechanism. CDR1as regulates the TGF-β signaling pathway and ECM-receptor interaction to serve as a mediator in alteration of the tumor microenvironment.


2018 ◽  
Vol 58 (3) ◽  
pp. 388-397 ◽  
Author(s):  
Xiao-Jing Chen ◽  
Sha Wu ◽  
Rui-Ming Yan ◽  
Liang-Sheng Fan ◽  
Lan Yu ◽  
...  

2019 ◽  
Vol 143 (2) ◽  
pp. 112-117 ◽  
Author(s):  
Yueyang Li ◽  
M. James You ◽  
Yaling Yang ◽  
Dongzhi Hu ◽  
Chen Tian

In addition to intrinsic factors, leukemia cell growth is influenced by the surrounding nonhematopoietic cells in the leukemic microenvironment, including fibroblasts, mesenchymal stem cells, vascular cells, and various immune cells. Despite the fact that macrophages are an important component of human innate immunity, tumor-associated macrophages (TAMs) have long been considered as an accomplice promoting tumor growth and metastasis. TAMs are activated by an abnormal malignant microenvironment, polarizing into a specific phenotype and participating in tumor progression. TAMs that exist in the microenvironment of different types of leukemia are called leukemia-associated macrophages (LAMs), which are reported to be associated with the progression of leukemia. This review describes the role of LAMs in different leukemia subtypes.


Sign in / Sign up

Export Citation Format

Share Document