scholarly journals Tumor- and Osteoblast-Derived Periostin in Prostate Cancer bone Metastases

2022 ◽  
Vol 11 ◽  
Author(s):  
Chuan-Yu Sun ◽  
Yuan-Yuan Mi ◽  
Sheng-Yang Ge ◽  
Qing-Feng Hu ◽  
Ke Xu ◽  
...  

Exploring the biological function of periostin (POSTN) in prostate cancer (PCa) bone metastasis is of importance. It was observed that the expression of POSTN was high in PCa, especially highest in PCa metastasized to bone. In this study, we found that inhibiting POSTN in PCa cells could significantly alleviate PCa bone metastasis in vivo, suggesting POSTN is a promising therapeutic target. Since, due to the secreted expression of POSTN in osteoblasts and PCa, we hypothesized the positive feedback loop between osteoblasts and PCa mediated by POSTN in PCa bone metastasis. The in vitro experiments demonstrated that osteoblast-derived POSTN promoted PCa cell proliferation and invasion and PCa cell-derived POSTN promotes proliferation of osteoblasts. Furthermore, we found that POSTN regulated PCa and osteoblast function through integrin receptors. Finally, 18F-Alfatide II was used as the molecule probe of integrin αvβ3 in PET-CT, revealing high intake in metastatic lesions. Our findings together indicate that targeting POSTN in PCa cells as well as in the osteoblastic may be an effective treatment for PCa bone metastasis.

2020 ◽  
Author(s):  
Yongheng Ye ◽  
Lingli Zhang ◽  
Yuhu Dai ◽  
Zhi Wang ◽  
Cuie Li ◽  
...  

Abstract Treatment of bone metastasis of prostate cancer remains a formidable challenge. The skeleton has a poorer blood supply, leading to inadequate drug distribution into the bone after administration. This study aimed to develop aptamer-anchored hyperbranched poly (amido amine) (HPAA) for the systemic delivery of miRNA-133a-3p and to evaluate its therapeutic potential against bone metastasis of prostate cancer in vivo and in vitro. A glutathione (GSH)-responsive cationic HPAA was prepared by the Michael addition reaction. Furthermore, HPAA-PEG was produced by PEGylation, and then the aptamer targeted to prostate-specific membrane antigen (PSMA) was conjugated to the HPAA-PEG. The obtained HPAA-PEG-APT could form nanocomplexes with miRNA-133a-3p through electrostatic adsorption. The results of immunocytochemistry indicated that the complexes could target PSMA-expressing LNCaP cells. The ability of HPAA-PEG-APT to facilitate the delivery of miRNA-133a-3p into LNCaP cells was proven, and HPAA-PEG-APT/miRNA-133a-3p demonstrated enhanced antitumor activity, lower cytotoxicity and better biocompatibility in vitro. Moreover, in a mouse tibial injection tumor model, the intravenous injection of the HPAA-PEG-APT/miRNA-133a-3p complex significantly inhibited cancer growth and extended the survival time. In summary, this study provided an aptamer-anchored HPAA-loaded gene system to deliver miRNA-133a-3p for better therapeutic efficacy of bone metastasis of prostate cancer.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e16576-e16576
Author(s):  
Marianna Kruithof-de Julio ◽  
Letizia Astrologo ◽  
Eugenio Zoni ◽  
Sofia Karkampouna ◽  
Peter C Gray ◽  
...  

e16576 Background: Prostate cancer is the second most common cancer in men worldwide. Lethality is normally associated with the consequences of metastasis rather than the primary tumor. In particular, bone is the most frequent site of metastasis and once prostate tumor cells are engrafted in the skeleton, curative therapy is no longer possible. Bone morphogenetic proteins (BMPs) play a critical role in bone physiology and pathology. However, little is known about the role of BMP9 and its signaling receptors, ALK1 and ALK2, in prostate cancer and bone metastasis. In this context, we investigate the impact of BMP9 on primary prostate cancer and derived bone metastasis. Methods: The human ALK1 extracellular domain (ECD) binds BMP9 and BMP10 with high affinity. In order to study the effect of BMP9 in vitro and in vivo we use a soluble chimeric protein, consisting of ALK1 ECD fused to human Fc (ALK1Fc), for preventing the activation of endogenous signaling. ALK1Fc sequesters BMP9 and BMP10, preserving the activation of ALK1 through other ligands. Results: We show that ALK1Fc reduces BMP9-mediated signaling and decreases proliferation of highly metastatic and tumor initiating human prostate cancer cells in vitro. In line with these observations, we demonstrate that ALK1Fc reduces tumor growth in vivo in an orthotopic transplantation model. The propensity of the primary prostate cancer to metastasize to the bone is also investigated. In particular, we report how the ALK1Fc influences the prostate cancer cells in vitro and in vivo when these are probed in different bone settings (co-culture with bone cells and intraosseous transplantation in mice). Conclusions: Our study provides the first demonstration that ALK1Fc inhibits prostate cancer cells growth identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. All together, these findings justify the ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.


2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 232-232 ◽  
Author(s):  
Hilde Hoving ◽  
Selma Palthe ◽  
Marleen Vallinga ◽  
Rutger Dost ◽  
Jourik A. Gietema ◽  
...  

232 Background: Androgen deprivation is the mainstay in the treatment of metastatic prostate cancer. During treatment, the majority of patients will develop progressive disease despite castrate levels of testosterone; castration-resistant prostate cancer (CRPC). In vivo determination of androgen receptor status by 18F-FDHT PET/CT could be of use to predict treatment response timely and objectively. The objective of this study is to assess the value of early 18F-FDHT PET/CT to predict treatment response of enzalutamide in mCRPC. Methods: This pilot study was performed in 18 chemotherapy naïve men with mCRPC. 18F-FDHT PET/CT was performed at baseline and after 4 weeks of treatment with enzalutamide. Standard Uptake Value (SUV)max and SUVpeak of the 5 most intense and/or all bone, pleura and lymph node metastases were determined per patient. Area under the curve (AUC), sensitivity (Se) and specificity (Sp) of different characteristics of 18F-FDHT PET/CT were performed by ROC analysis. Response was determined at 12 weeks of treatment according to PCCTWG. Results: A total of 477 lesions (411 bone, 3 pleura and 63 lymph node) were found. At 12 weeks, response was seen in 16 patients, whereas 2 patients showed no response. The characteristics of 18F-FDHT PET/CT are shown in table 1. Baseline median SUVpeak of all metastatic lesions showed an AUC of 0.79 to predict response. AUC values using the 5 most intense lesions only or using the delta between baseline and 5 weeks were less accurate. Clinical trial information: NTR4086. Conclusions: Baseline 18F-FDHT PET/CT using SUVpeak of all metastatic lesions predicts treatment response in mCRPC treated with enzalutamide with an AUC of 0.79.[Table: see text]


2018 ◽  
Vol 216 (2) ◽  
pp. 428-449 ◽  
Author(s):  
Dong Ren ◽  
Yuhu Dai ◽  
Qing Yang ◽  
Xin Zhang ◽  
Wei Guo ◽  
...  

In a substantial fraction of prostate cancer (PCa) patients, bone metastasis appears after years or even decades of latency. Canonical Wnt/β-catenin signaling has been proposed to be implicated in dormancy of cancer cells. However, how these tumor cells are kept dormant and recur under control of Wnt/β-catenin signaling derived from bone microenvironment remains unknown. Here, we report that Wnt5a from osteoblastic niche induces dormancy of PCa cells in a reversible manner in vitro and in vivo via inducing Siah E3 Ubiquitin Protein Ligase 2 (SIAH2) expression, which represses Wnt/β-catenin signaling. Furthermore, this effect of Wnt5a-induced dormancy of PCa cells depends on receptor tyrosine kinase-like orphan receptor 2 (ROR2), and a negative correlation of ROR2 expression with bone metastasis–free survival is observed in PCa patients. Therefore, these results demonstrate that Wnt5a/ROR2/SIAH2 signaling axis plays a crucial role in inducing and maintaining PCa cells dormancy in bone, suggesting a potential therapeutic utility of Wnt5a via inducing dormancy of PCa cells in bone.


2021 ◽  
Vol 14 (6) ◽  
pp. 547
Author(s):  
Xia Cheng ◽  
Ralph Hübner ◽  
Valeska von von Kiedrowski ◽  
Gert Fricker ◽  
Ralf Schirrmacher ◽  
...  

Combining two peptides addressing two different receptors to a heterobivalent peptidic ligand (HBPL) is thought to enable an improved tumor-targeting sensitivity and thus tumor visualization, compared to monovalent peptide ligands. In the case of melanoma, the Melanocortin-1 receptor (MC1R), which is stably overexpressed in the majority of primary malignant melanomas, and integrin αvβ3, which is involved in lymph node metastasis and therefore has an important role in the transition from local to metastatic disease, are important target receptors. Thus, if a radiolabeled HBPL could be developed that was able to bind to both receptor types, the early diagnosis and correct staging of the disease would be significantly increased. Here, we report on the design, synthesis, radiolabeling and in vitro and in vivo testing of different SiFAlin-modified HBPLs (SiFA = silicon fluoride acceptor), consisting of an MC1R-targeting (GG-Nle-c(DHfRWK)) and an integrin αvβ3-affine peptide (c(RGDfK)), being connected by a symmetrically branching framework including linkers of differing length and composition. Kit-like 18F-radiolabeling of the HBPLs 1–6 provided the labeled products [18F]1–[18F]6 in radiochemical yields of 27–50%, radiochemical purities of ≥95% and non-optimized molar activities of 17–51 GBq/µmol within short preparation times of 25 min. Besides the evaluation of radiotracers regarding logD(7.4) and stability in human serum, the receptor affinities of the HBPLs were investigated in vitro on cell lines overexpressing integrin αvβ3 (U87MG cells) or the MC1R (B16F10). Based on these results, the most promising compounds [18F]2, showing the highest affinity to both target receptors (IC50 (B16F10) = 0.99 ± 0.11 nM, IC50 (U87MG) = 1300 ± 288 nM), and [18F]4, exhibiting the highest hydrophilicity (logD(7.4) = −1.39 ± 0.03), were further investigated in vivo and ex vivo in a xenograft mouse model bearing both tumors. For both HBPLs, clear visualization of B16F10, as well as U87MG tumors, was feasible. Blocking studies using the respective monospecific peptides demonstrated both peptide binders of the HBPLs contributing to tumor uptake. Despite the somewhat lower target receptor affinities (IC50 (B16F10) = 6.00 ± 0.47 nM and IC50 (U87MG) = 2034 ± 323 nM) of [18F]4, the tracer showed higher absolute tumor uptakes ([18F]4: 2.58 ± 0.86% ID/g in B16F10 tumors and 3.92 ± 1.31% ID/g in U87MG tumors; [18F]2: 2.32 ± 0.49% ID/g in B16F10 tumors and 2.33 ± 0.46% ID/g in U87MG tumors) as well as higher tumor-to-background ratios than [18F]2. Thus, [18F]4 demonstrates to be a highly potent radiotracer for the sensitive and bispecific imaging of malignant melanoma by PET/CT imaging and impressively illustrates the suitability of the underlying concept to develop heterobivalent integrin αvβ3- and MC1R-bispecific radioligands for the sensitive and specific imaging of malignant melanoma by PET/CT.


2021 ◽  
Author(s):  
Jialin Wang ◽  
Xinxing Du ◽  
Xiao Wang ◽  
Huixiang Xiao ◽  
Nan Jing ◽  
...  

Abstract Background The majority of the deaths of prostate cancer (PCa) are caused by progression to bone metastatic PCa. The importance of extracellular vesicles (EVs) in the formation of the pre-metastatic niche has been demonstrated in recent years. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and to activate pre-metastatic niche formation for PCa bone metastasis remain unclear. Methods Bioinformatics and qRT-PCR analyses were used to screen microRNAs and to identify the elevated expression of miR-378a-3p in both serum-derived EVs from PCa patients and in culture medium-derived EVs from PCa cell lines. Functional assays in vitro and in vivo were performed to investigate the functions of miR-378a-3p during PCa progression. IF staining and Dual-luciferase reporter, co-IP, western blot, RIP and ChIP assays were conducted to reveal the underlying mechanism. Results We found that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa which keeps a low intracellular concentration of miR-378a-3p, to promote proliferation and the MAOA-mediated epithelial-to-mesenchymal transition (EMT) in PCa cells. In addition, we demonstrated that the enrichment of miR-378a-3p in tumor derived EVs was induced by overexpression of hnRNPA2B1 as a transfer chaperone. After miR-378a-3p-enriched EVs were taken in by BMMs, elevated intracellular concentration of miR-378a-3p promoted osteolytic progression by targeting the Dyrk1a/Nfatc1 pathway. Mechanistically, inhibition of Dyrk1a by miR-378a-3p improved the nuclear translocation of Nfatc1 to promote expression of the downstream target gene Angptl2. As a feedback, increased secretion of Angptl2 into the tumor environment promoted PCa progression. Conclusions Our findings indicate that tumor-derived miR-378a-3p-containing EVs play a significant role in promoting prostate cancer bone metastasis by activating a Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, which implicates that miR-378a-3p may be a potential predictor of metastatic PCa. Moreover, reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into tumor-derived EVs might be a potential therapeutic strategy for PCa metastasis.


2021 ◽  
Author(s):  
Dong Ren ◽  
Xiangwei Yuan ◽  
Jiazheng Cao ◽  
Bin Wang ◽  
Ruixiao Li ◽  
...  

Abstract Background: Generally, both strands of a single pre-miRNA have been demonstrated to play a similar role in the same tumor type. However, there are no available literatures yet so far clarifying the opposite roles of both strands froma single miRNAin one tumor type. The purpose of this study is to investigate the functional role of both strands of miR-154 in bone metastasis of prostate cancer (PCa). Methods: miR-154-5p expression was examinedin 285 clinicalPCa tissuesby in situ hybridization. The clinical correlation ofmiR-154-5p expression with clinicopathological features,and overall and bone metastasis-free survival inPCa patients was evaluated by Kaplan-Meier survival and statisticalanalysis. The biological roles of miR-154-3p and miR-154-5p in the bone metastasis of PCa were investigated both in vitroand in vivo.Bioinformatics analysis, western blot and luciferase reporter analysis were used to determinethe potential targets of miR-154-5p.Luciferase assay and Western blotting were performed to clarify the underlying pathway implicated in the role of miR-154-5p in bone metastasis of PCa.Results: Contrary to the well established pro-bone metastatic role of miR-154-3p in PCa, we found that miR-154-5p expression was reduced in PCa tissues with bone metastasis andbone metastatic PCa cell lines. Downexpression of miR-154-5p was positively associated with bone metastasis status, and predicted poorer bone metastasis-free survival in PCa patients. Gain of function experiments showed that upregulating miR-154-5p repressed, while silencing miR-154-5p promoted invasion, migration and proliferation capacities of PCa cells in vitro. Conversely, miR-154-3p yielded an opposite effect oninvasion and migration capacities of PCa cells. Importantly, administration of agomir-154-5p effectivelyinhibited bone metastasis of PCa cellsin vivo. Mechanistic dissection further demonstrated miR-154-5p inhibited invasion, migration and proliferation by targeting EGFR and FGFR1, leading to inactivation of PI3K/AKT signaling. However, the autocrine levels of corresponding ligands in the supernantant of PCa cells were not affected by the changed expression of miR-154-5p.Conclusion: Our results for the first time reveal the different role of both strands froma single miRNA in bone metastasis of PCa, which will facilitate the development of anti-bone metastatic therapeutic strategy in PCa.


2006 ◽  
Vol 175 (4S) ◽  
pp. 257-257
Author(s):  
Jennifer Sung ◽  
Qinghua Xia ◽  
Wasim Chowdhury ◽  
Shabana Shabbeer ◽  
Michael Carducci ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 255-256
Author(s):  
Cyrill A. Rentsch ◽  
Jeroen Buijs ◽  
Geertje Van der Horst ◽  
Petra Van Overveld ◽  
Antoinette Wetterwald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document