scholarly journals Deterministic and Stochastic Cellular Mechanisms Contributing to Carbon Monoxide Induced Ventricular Arrhythmias

2021 ◽  
Vol 12 ◽  
Author(s):  
Moza M. Al-Owais ◽  
Derek S. Steele ◽  
Arun V. Holden ◽  
Alan P. Benson

Chronic exposure to low levels of Carbon Monoxide is associated with an increased risk of cardiac arrhythmia. Microelectrode recordings from rat and guinea pig single isolated ventricular myocytes exposed to CO releasing molecule CORM-2 and excited at 0.2/s show repolarisation changes that develop over hundreds of seconds: action potential prolongation by delayed repolarisation, EADs, multiple EADs and oscillations around the plateau, leading to irreversible repolarisation failure. The measured direct effects of CO on currents in these cells, and ion channels expressed in mammalian systems showed an increase in prolonged late Na+, and a decrease in the maximal T- and L-type Ca++. peak and late Na+, ultra-rapid delayed, delayed rectifier, and the inward rectifier K+ currents. Incorporation of these CO induced changes in maximal currents in ventricular cell models; (Gattoni et al., J. Physiol., 2016, 594, 4193–4224) (rat) and (Luo and Rudy, Circ. Res., 1994, 74, 1071–1096) (guinea-pig) and human endo-, mid-myo- and epi-cardial (O’Hara et al., PLoS Comput. Biol., 2011, 7, e1002061) models, by changes in maximal ionic conductance reproduces these repolarisation abnormalities. Simulations of cell populations with Gaussian distributions of maximal conductance parameters predict a CO induced increase in APD and its variability. Incorporation of these predicted CO induced conductance changes in human ventricular cell electrophysiology into ventricular tissue and wall models give changes in indices for the probability of the initiation of re-entrant arrhythmia.

1991 ◽  
Vol 260 (4) ◽  
pp. H1390-H1393 ◽  
Author(s):  
K. B. Walsh ◽  
J. P. Arena ◽  
W. M. Kwok ◽  
L. Freeman ◽  
R. S. Kass

When the patch-clamp technique was used, a slowly activating, time-dependent outward current was identified in both cell-attached and excised membrane patches obtained from guinea pig ventricular myocytes. This macroscopic patch current was present in approximately 50% of patches studied and could be observed both in the presence and absence of unitary single channel activity (i.e., ATP-sensitive K+ channels). The time course of activation of the patch current resembled that of the whole cell delayed-rectifier K+ current (IK) recorded under similar ionic conditions, and the patch current and IK were activated over a similar membrane potential range. The time-dependent patch current could be eliminated when the Nernst potential for K+ equaled that of the pulse voltage. The patch current was inhibited by external addition of the tertiary ammonium compound LY 97241 (50 microM) and was augmented after internal application of the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (500 nM). Deactivating tail currents with kinetics similar to those of IK could be recorded to cell-attached and excised patches. Unitary single channel events underlying the time-dependent patch current could not be resolved despite various attempts to increase single channel conductance. Thus our results suggest that a major component of delayed rectification in guinea pig ventricular cells is due to the activity of a high-density, extremely low conductance K+ channel.


2021 ◽  
Author(s):  
Breanne Ashleigh Cameron ◽  
T Alexander Quinn

Background: Cardiac dyskinesis in regional ischemia results in arrhythmias through mechanically-induced changes in electrophysiology ('mechano-arrhythmogenicity') that involve ischemic alterations in voltage-calcium (Ca2+) dynamics, creating a vulnerable period (VP) in late repolarisation. Objective: To determine cellular mechanisms of mechano-arrhythmogenicity in ischemia and define the importance of the VP. Methods and Results: Voltage-Ca2+ dynamics were simultaneously monitored in rabbit ventricular myocytes by dual-fluorescence imaging to assess the VP in control and simulated ischemia (SI). The VP was longer in SI than in control (146±7 vs 54±8 ms; p<0.0001) and was reduced by blocking KATP channels with glibenclamide (109±6 ms; p<0.0001). Cells were rapidly stretched (10-18% increase in sarcomere length over 110-170 ms) with carbon fibres during diastole or the VP. Mechano-arrhythmogenicity, associated with stretch and release in the VP, was greater in SI than control (7 vs 1% of stretches induced arrhythmias; p<0.005) but was similar in diastole. Arrhythmias during the VP were more complex than in diastole (100 vs 69% had sustained activity; p<0.05). In the VP, incidence was reduced with glibenclamide (2%; p<0.05), by chelating intracellular Ca2+ (BAPTA; 2%; p<0.05), blocking mechano-sensitive TRPA1 (HC-030031; 1%; p<0.005), or by scavenging (NAC; 1%; p<0.005) or blocking reactive oxygen species (ROS) production (DPI; 2%; p<0.05). Ratiometric Ca2+ imaging revealed that SI increased diastolic Ca2+ (+9±1%, p<0.0001), which was not prevented by HC-030031 or NAC. Conclusion: In ischemia, mechano-arrhythmogenicity is enhanced specifically during the VP and is mediated by ROS, TRPA1, and Ca2+.


1999 ◽  
Vol 90 (1) ◽  
pp. 156-164 ◽  
Author(s):  
Anatoly E. Martynyuk ◽  
Timothy E. Morey ◽  
Pekka M.J. Raatikainen ◽  
Christoph N. Seubert ◽  
Donn M. Dennis

Background Commonly used barbiturate anesthetics may significantly influence cardiac electrophysiologic characteristics. The authors evaluated thiopental (a thiobarbiturate) and methohexital (an oxybarbiturate), two compounds with similar physicochemical properties but different structures, to determine whether they have distinct effects on the major ionic currents that determine action potential duration (APD) in ventricular myocytes. Methods The effects of thiopental and methohexital (50 microM) on APD at 50% (APD50) and 90% (APD90) repolarization were studied in guinea pig and rabbit single ventricular myocytes using the patch-clamp technique in a whole-cell configuration. The ionic mechanisms underlying the APD changes were evaluated by measuring the anesthetics' effects on the L-type calcium inward current, the inward rectifier potassium current, and the delayed rectifier potassium current in guinea pig cells and on the transient outward potassium current in rabbit cells. Results Thiopental and methohexital caused opposite effects on APD. Whereas thiopental prolonged APD50 and APD90 in guinea pig and rabbit ventricular myocytes, methohexital shortened them. Thiopental markedly depressed both the inward and outward components of the inward rectifier potassium current, whereas methohexital caused minimal inhibition of the inward component and no change in the outward component. The delayed rectifier potassium current was inhibited by thiopental but significantly potentiated by methohexital. Neither thiopental nor methohexital significantly affected the transient outward potassium current or the L-type calcium inward current. Conclusions Despite their similar lipid solubilities, molecular weights, and pKa values, thiopental increased and methohexital decreased the APD in ventricular myocytes by predominantly inhibiting the inward rectifier potassium current and the delayed rectifier potassium current and by increasing the delayed rectifier potassium current, respectively. These characteristics suggest distinct structure-specific actions of barbiturates on the function of myocardial ionic channels.


Sign in / Sign up

Export Citation Format

Share Document