scholarly journals A Synthetic Hydrogel, VitroGel® ORGANOID-3, Improves Immune Cell-Epithelial Interactions in a Tissue Chip Co-Culture Model of Human Gastric Organoids and Dendritic Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Michelle D. Cherne ◽  
Barkan Sidar ◽  
T. Andrew Sebrell ◽  
Humberto S. Sanchez ◽  
Kody Heaton ◽  
...  

Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines.

Author(s):  
Alma Zernecke ◽  
Florian Erhard ◽  
Tobias Weinberger ◽  
Christian Schulz ◽  
Klaus Ley ◽  
...  

AbstractRationaleAccumulation of mononuclear phagocytes (monocytes, macrophages and dendritic cells) in the vessel wall is a hallmark of atherosclerosis. Although single-cell RNA-sequencing (scRNA-seq) has shed new light on immune cell transcriptional diversity in atherosclerosis, it is still unknown whether the transcriptional states of mononuclear phagocytes are conserved between mouse and human atherosclerosis.ObjectiveTo integrate and compare macrophage and dendritic cell transcriptomes in mouse and human atherosclerosis.Methods and resultsWe integrated 12 scRNA-seq datasets of immune cells isolated from healthy or atherosclerotic mouse aortas, and scRNA-seq data from 11 patients (n=4 coronary vessels, n=7 carotid endarterectomy specimens) from two independent studies. Integration of mouse data recovered previously described macrophage populations and identified novel subpopulations with discrete transcriptomic signatures within populations of aortic resident (Lyve1), inflammatory (Il1b), as well as foamy (Trem2hi) macrophages. We identified unique transcriptomic features distinguishing aortic intimal resident macrophages from atherosclerosis-associated Trem2hi macrophages. Also, populations of Xcr1+ type 1 classical dendritic cells (cDC1), Cd209a+ cDC2 and mature DCs (Ccr7, Fscn1) were detected. In humans, we uncovered macrophage and dendritic cell populations with gene expression patterns similar to those observed in mice in both vascular beds. In particular, core transcripts of the foamy/Trem2hi signature (TREM2, SPP1, GPNMB, CD9) mapped to a specific population of macrophages in human lesions. Cross-species data integration demonstrated transcriptionally proximal macrophage and dendritic cell populations in mice and humans.ConclusionsWe demonstrate conserved transcriptomics features of macrophages and dendritic cells in atherosclerosis in mice and humans, emphasizing the relevance of mouse models to study mononuclear phagocytes in atherosclerosis.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hong Liu ◽  
Suryasarathi Dasgupta ◽  
Yu Fu ◽  
Brandi Bailey ◽  
Christian Roy ◽  
...  

Abstract Background Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269–78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al., Mucosal Immunol 10:957–70, 2017), and suggest they may contribute to the pathogenesis of ulcerative colitis (UC) by inducing Th1/Th2/Th17 responses (Matsuno et al., Inflamm Bowel Dis 23:1524–34, 2017). Results We performed in silico analysis and evaluated the enrichment of immune cells, with a focus on mononuclear phagocytes in IBD patient colonic biopsies. Samples were from different gut locations, with different levels of disease severity, and with treatment response to current therapies. We observe enrichment of monocytes, M1 macrophages, activated DCs (aDCs) and plasmacytoid dendritic cells (pDCs) in inflamed tissues from various gut locations. This enrichment correlates with disease severity. Additionally, the same mononuclear phagocytes subsets are among the top enriched cell types in both infliximab and vedolizumab treatment non-responder samples. We further investigated the enrichment of selected DC and monocyte subsets based on gene signatures derived from a DC- and monocyte-focused single cell RNA-seq (scRNA-seq) study (Villani et al., Science 356:eaah4573, 2017), and verified enrichment in both inflamed tissues and those with treatment resistance. Moreover, we validated an increased mononuclear phagocyte subset abundance in a Dextran Sulphate Sodium (DSS) induced colitis model in C57Bl/6 mice representative of chronic inflammation. Conclusions We conducted an extensive analysis of immune cell populations in IBD patient colonic samples and identified enriched subsets of monocytes, macrophages and dendritic cells in inflamed tissues. Understanding how they interact with other immune cells and other cells in the colonic microenvironment such as epithelial and stromal cells will help us to delineate disease pathogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jake W. Rhodes ◽  
Rachel A. Botting ◽  
Kirstie M. Bertram ◽  
Erica E. Vine ◽  
Hafsa Rana ◽  
...  

AbstractTissue mononuclear phagocytes (MNP) are specialised in pathogen detection and antigen presentation. As such they deliver HIV to its primary target cells; CD4 T cells. Most MNP HIV transmission studies have focused on epithelial MNPs. However, as mucosal trauma and inflammation are now known to be strongly associated with HIV transmission, here we examine the role of sub-epithelial MNPs which are present in a diverse array of subsets. We show that HIV can penetrate the epithelial surface to interact with sub-epithelial resident MNPs in anogenital explants and define the full array of subsets that are present in the human anogenital and colorectal tissues that HIV may encounter during sexual transmission. In doing so we identify two subsets that preferentially take up HIV, become infected and transmit the virus to CD4 T cells; CD14+CD1c+ monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2).


2021 ◽  
Vol 22 (3) ◽  
pp. 1118
Author(s):  
Abdulaziz Alamri ◽  
Derek Fisk ◽  
Deepak Upreti ◽  
Sam K. P. Kung

Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gheed Al-Hity ◽  
FengWei Yang ◽  
Eduard Campillo-Funollet ◽  
Andrew E. Greenstein ◽  
Hazel Hunt ◽  
...  

AbstractInvestigational in vitro models that reflect the complexity of the interaction between the immune system and tumours are limited and difficult to establish. Herein, we present a platform to study the tumour-immune interaction using a co-culture between cancer spheroids and activated immune cells. An algorithm was developed for analysis of confocal images of the co-culture to evaluate the following quantitatively; immune cell infiltration, spheroid roundness and spheroid growth. As a proof of concept, the effect of the glucocorticoid stress hormone, cortisol was tested on 66CL4 co-culture model. Results were comparable to 66CL4 syngeneic in vivo mouse model undergoing psychological stress. Furthermore, administration of glucocorticoid receptor antagonists demonstrated the use of this model to determine the effect of treatments on the immune-tumour interplay. In conclusion, we provide a method of quantifying the interaction between the immune system and cancer, which can become a screening tool in immunotherapy design.


2008 ◽  
Vol 181 (9) ◽  
pp. 5865-5874 ◽  
Author(s):  
Wanwisa Dejnirattisai ◽  
Thaneeya Duangchinda ◽  
Chen-Lung Steve Lin ◽  
Sirijitt Vasanawathana ◽  
Meleri Jones ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kevin Mellert ◽  
Julian Benckendorff ◽  
Frank Leithäuser ◽  
Katarzyna Zimmermann ◽  
Peter Wiegand ◽  
...  

AbstractA dendritic cell sarcoma cell line, U-DCS, was established from a dendritic cell sarcoma in a 53-year-old Caucasian male patient. Since its establishment, U-DCS has maintained stable phenotypic characteristics in vitro and has a doubling time of approximately 2 days under standard culture conditions. U-DCS is growing with typical dendritic cell morphology in tissue and expresses the dendritic cell sarcoma immunophenotypic markers S100 protein, MHCI, MHCII, and vimentin. Expression analysis revealed transcripts for the toll-like receptors TLR3, -4, -9 and DDX58 (RIG-I), but not for TLR2. U-DCS shows functional features of dendritic cells with the ability of phagocytosis and antigen-specific T cell stimulation. Karyotype-, CGH-, and mFISH analysis point to a chromosomal instability and a hypotetraploid karyotype with approximately 130 chromosomes. U-DCS is the first immortalized human dendritic cell sarcoma cell line and has some morphological and functional features of dendritic cells without dependency on growth factors.


Immunobiology ◽  
2004 ◽  
Vol 209 (1-2) ◽  
pp. 67-77 ◽  
Author(s):  
Julie Véran ◽  
Mohamad Mohty ◽  
Béatrice Gaugler ◽  
Carlo Chiavaroli ◽  
Daniel Olive

2021 ◽  
Vol 8 ◽  
Author(s):  
Floris J. van Dalen ◽  
Thomas Bakkum ◽  
Tyrza van Leeuwen ◽  
Mirjam Groenewold ◽  
Edgar Deu ◽  
...  

Cathepsin S is a lysosomal cysteine protease highly expressed in immune cells such as dendritic cells, B cells and macrophages. Its functions include extracellular matrix breakdown and cleavage of cell adhesion molecules to facilitate immune cell motility, as well as cleavage of the invariant chain during maturation of major histocompatibility complex II. The identification of these diverse specific functions has brought the challenge of delineating cathepsin S activity with great spatial precision, relative to related enzymes and substrates. Here, the development of a potent and highly selective two-step activity-based probe for cathepsin S and the application in multicolor bio-orthogonal correlative light-electron microscopy is presented. LHVS, which has been reported as a selective inhibitor of cathepsin S with nanomolar potency, formed the basis for our probe design. However, in competitive activity-based protein profiling experiments LHVS showed significant cross-reactivity toward Cat L. Introduction of an azide group in the P2 position expanded the selectivity window for cathepsin S, but rendered the probe undetectable, as demonstrated in bio-orthogonal competitive activity-based protein profiling. Incorporation of an additional azide handle for click chemistry on the solvent-exposed P1 position allowed for selective labeling of cathepsin S. This highlights the influence of click handle positioning on probe efficacy. This probe was utilized in multicolor bio-orthogonal confocal and correlative light-electron microscopy to investigate the localization of cathepsin S activity at an ultrastructural level in bone marrow-derived dendritic cells. The tools developed in this study will aid the characterization of the variety of functions of cathepsin S throughout biology.


Sign in / Sign up

Export Citation Format

Share Document