scholarly journals A Comprehensive Analysis of Metabolomics and Transcriptomics Reveals Novel Biomarkers and Mechanistic Insights on Lorlatinib Crosses the Blood-Brain Barrier

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Chen ◽  
Chunyu Li ◽  
Yafei Shi ◽  
Yujun Zhang ◽  
Dujia Jin ◽  
...  

Of late, lorlatinib has played an increasingly pivotal role in the treatment of brain metastasis from non-small cell lung cancer. However, its pharmacokinetics in the brain and the mechanism of entry are still controversial. The purpose of this study was to explore the mechanisms of brain penetration by lorlatinib and identify potential biomarkers for the prediction of lorlatinib concentration in the brain. Detection of lorlatinib in lorlatinib-administered mice and control mice was performed using liquid chromatography and mass spectrometry. Metabolomics and transcriptomics were combined to investigate the pathway and relationships between metabolites and genes. Multilayer perceptron was applied to construct an artificial neural network model for prediction of the distribution of lorlatinib in the brain. Nine biomarkers related to lorlatinib concentration in the brain were identified. A metabolite-reaction-enzyme-gene interaction network was built to reveal the mechanism of lorlatinib. A multilayer perceptron model based on the identified biomarkers provides a prediction accuracy rate of greater than 85%. The identified biomarkers and the neural network constructed with these metabolites will be valuable for predicting the concentration of drugs in the brain. The model provides a lorlatinib to treat tumor brain metastases in the clinic.

2014 ◽  
Vol 490-491 ◽  
pp. 1588-1591
Author(s):  
Liang Zhang ◽  
Hao Yue Sun ◽  
Guo Lv ◽  
Xiao Lu Sun

In this paper, the intelligentized way is applied to detecting anomaly intrusion. Based on the global property of genetic algorithm and the locality of neural network, this method effectively improves the convergence speed of the network and the detection accuracy rate. It not only avoids the defect of the neural network, but also improves the precision.


2021 ◽  
Vol 12 ◽  
Author(s):  
Genís Calderer ◽  
Marieke L. Kuijjer

Networks are useful tools to represent and analyze interactions on a large, or genome-wide scale and have therefore been widely used in biology. Many biological networks—such as those that represent regulatory interactions, drug-gene, or gene-disease associations—are of a bipartite nature, meaning they consist of two different types of nodes, with connections only forming between the different node sets. Analysis of such networks requires methodologies that are specifically designed to handle their bipartite nature. Community structure detection is a method used to identify clusters of nodes in a network. This approach is especially helpful in large-scale biological network analysis, as it can find structure in networks that often resemble a “hairball” of interactions in visualizations. Often, the communities identified in biological networks are enriched for specific biological processes and thus allow one to assign drugs, regulatory molecules, or diseases to such processes. In addition, comparison of community structures between different biological conditions can help to identify how network rewiring may lead to tissue development or disease, for example. In this mini review, we give a theoretical basis of different methods that can be applied to detect communities in bipartite biological networks. We introduce and discuss different scores that can be used to assess the quality of these community structures. We then apply a wide range of methods to a drug-gene interaction network to highlight the strengths and weaknesses of these methods in their application to large-scale, bipartite biological networks.


2021 ◽  
Vol 28 (2) ◽  
pp. 111-123

Nonlinear system identification (NSI) is of great significance to modern scientific engineering and control engineering. Despite their identification ability, the existing analysis methods for nonlinear systems have several limitations. The neural network (NN) can overcome some of these limitations in NSI, but fail to achieve desirable accuracy or training speed. This paper puts forward an NSI method based on adaptive NN, with the aim to further improve the convergence speed and accuracy of NN-based NSI. Specifically, a generic model-based nonlinear system identifier was constructed, which integrates the error feedback and correction of predictive control with the generic model theory. Next, the radial basis function (RBF) NN was optimized by adaptive particle swarm optimization (PSO), and used to build an NSI model. The effectiveness and speed of our model were verified through experiments. The research results provide a reference for applying the adaptive PSO-optimized RBFNN in other fields.


2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Chi Hang Cheng ◽  
Shuai Li ◽  
Seifedine Kadry

This project attempts to implement an Arduino robot to simulate a brainwave-controlled wheelchair for paralyzed patients with an improved controlling method. The robot should be able to move freely in anywhere under the control of the user and it is not required to predefine any map or path. An accurate and natural controlling method is provided, and the user can stop the robot any time immediately to avoid risks or danger. This project is using a low-cost and a brainwave-reading headset which has only a single lead electrode (Neurosky mind wave headset) to collect the EEG signal. BCI will be developed by sending the EEG signal to the Arduino Mega and control the movement of the robot. This project used the eye blinking as the robot controlling method as the eye blinking will cause a significant pulse in the EEG signal. By using the neural network to classify the blinking signal and the noise, the user can send the command to control the robot by blinking twice in a short period of time. The robot will be evaluated by driving in different places to test whether it can follow the expected path, avoid the obstacles, and stop in a specific position.


Aerobiologia ◽  
2019 ◽  
Vol 36 (2) ◽  
pp. 131-140 ◽  
Author(s):  
Z. Csépe ◽  
Á. Leelőssy ◽  
G. Mányoki ◽  
D. Kajtor-Apatini ◽  
O. Udvardy ◽  
...  

Abstract Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hao Yu ◽  
Yang Liu ◽  
Chao Li ◽  
Jianhao Wang ◽  
Bo Yu ◽  
...  

Background. Neuropathic pain (NP) is a devastating complication following nerve injury, and it can be alleviated by regulating neuroimmune direction. We aimed to explore the neuroimmune mechanism and identify some new diagnostic or therapeutic targets for NP treatment via bioinformatic analysis. Methods. The microarray GSE18803 was downloaded and analyzed using R. The Venn diagram was drawn to find neuroimmune-related differentially expressed genes (DEGs) in neuropathic pain. Gene Ontology (GO), pathway enrichment, and protein-protein interaction (PPI) network were used to analyze DEGs, respectively. Besides, the identified hub genes were submitted to the DGIdb database to find relevant therapeutic drugs. Results. A total of 91 neuroimmune-related DEGs were identified. The results of GO and pathway enrichment analyses were closely related to immune and inflammatory responses. PPI analysis showed two important modules and 8 hub genes: PTPRC, CD68, CTSS, RAC2, LAPTM5, FCGR3A, CD53, and HCK. The drug-hub gene interaction network was constructed by Cytoscape, and it included 24 candidate drugs and 3 hub genes. Conclusion. The present study helps us better understand the neuroimmune mechanism of neuropathic pain and provides some novel insights on NP treatment, such as modulation of microglia polarization and targeting bone resorption. Besides, CD68, CTSS, LAPTM5, FCGR3A, and CD53 may be used as early diagnostic biomarkers and the gene HCK can be a therapeutic target.


10.1186/gm404 ◽  
2012 ◽  
Vol 4 (12) ◽  
Author(s):  
Raymond J Louie ◽  
Jingyu Guo ◽  
John W Rodgers ◽  
Rick White ◽  
Najaf A Shah ◽  
...  

2005 ◽  
Vol 17 (8) ◽  
pp. 1739-1775 ◽  
Author(s):  
Osamu Hoshino

We propose two distinct types of norepinephrine (NE)-neuromodulatory systems: an enhanced-excitatory and enhanced-inhibitory (E-E/E-I) system and a depressed-excitatory and enhanced-inhibitory (D-E/E-I) system. In both systems, inhibitory synaptic efficacies are enhanced, but excitatory ones are modified in a contradictory manner: the E-E/E-I system enhances excitatory synaptic efficacies, whereas the D-E/E-I system depresses them. The E-E/E-I and D-E/E-I systems altered the dynamic property of ongoing (background) neuronal activity and greatly influenced the cognitive performance (S/N ratio) of a cortical neural network. The E-E/E-I system effectively enhanced S/N ratio for weaker stimuli with lower doses of NE, whereas the D-E/E-I system enhanced stronger stimuli with higher doses of NE. The neural network effectively responded to weaker stimuli if brief γ-bursts were involved in ongoing neuronal activity that is controlled under the E-E/E-I neuromodulatory system. If the E-E/E-I and the D-E/E-I systems interact within the neural network, depressed neurons whose activity is depressed by NE application have bimodal property. That is, S/N ratio can be enhanced not only for stronger stimuli as its original property but also for weaker stimuli, for which coincidental neuronal firings among enhanced neurons whose activity is enhanced by NE application are essential. We suggest that the recruitment of the depressed neurons for the detection of weaker (subthreshold) stimuli might be advantageous for the brain to cope with a variety of sensory stimuli.


Sign in / Sign up

Export Citation Format

Share Document