scholarly journals NLRP3 Overexpression Associated With Poor Prognosis and Presented as an Effective Therapeutic Target in Osteosarcoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Huang ◽  
Hui Chen ◽  
Shenglin Wang ◽  
Hongxiang Wei ◽  
Xinwen Wang ◽  
...  

Despite the development of diagnostic and treatment strategies, the survival outcome of patients with osteosarcoma remains poor. Nod-like receptor protein 3 (NLRP3) plays a crucial role in the inflammasome pathway, which is related to the progression of various tumors. However, the effect of NLRP3 on osteosarcoma has not yet been well explored. Our study aimed to investigate the role of NLRP3 in the malignant biological behavior of osteosarcoma as well as its therapeutic value. Immunohistochemistry was applied to investigate the NLRP3 expression in osteosarcoma and osteochondroma specimens. Cell Counting Kit-8, colony formation, wound healing, transwell, and flow cytometry assays were used to explore the contribution of NLRP3 to the proliferation, migration, invasion, apoptosis and cell cycle distribution of osteosarcoma cells in vitro. Western blot was performed to evaluate the expression of NLRP3 and the related proteins in osteosarcoma cell lines after the blockade of NLRP3 using CY-09 and lentivirus intervention. Furthermore, tumor formation assay was used to analyze the effect of NLRP3 on the growth of osteosarcoma in vivo. The results showed that the NLRP3 protein was overexpressed in osteosarcoma, which was independently correlated with the poor prognosis of patients. Moreover, NLRP3 suppression by the inhibitor of CY-09 or lentivirus-induced gene knockdown inhibited the cell proliferation, migration, invasion and promoted the cell apoptosis and G1 cell cycle arrest in osteosarcoma via targeting the inflammasome pathway. Our in vivo results confirmed that the inhibition of NLRP3 suppressed the tumor formation of osteosarcoma. In conclusion, NLRP3 may be regarded as an independent prognostic biomarker and a potential therapeutic target for osteosarcoma.

2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Ying Wang ◽  
Shumei Xu ◽  
Yaochi Wu ◽  
Junfeng Zhang

Cucurbitacin E (CuE), a potent member of triterpenoid family isolated from plants, has been confirmed as an antitumour agent by inhibiting proliferation, migration and metastasis in diverse cancer. However, the effects and mechanisms of CuE on osteosarcoma (OS) have not been well understood. The present study aimed to test whether CuE could inhibit growth and invasion of OS cells and reveal its underlying molecular mechanism. After various concentrations of CuE treatment, the anti-proliferative effect of CuE was assessed using the cell counting Kit-8 assay. Flow cytometry analysis was employed to measure apoptosis of OS cells. Cell cycle distribution was analysed by propidium iodide staining. Transwell assay was performed to evaluate the effect of CuE on invasion potential of OS cells. The protein levels were measured by western blot. In addition, the potency of CuE on OS cells growth inhibition was assessed in vivo. Our results showed that CuE inhibited cell growth and invasion, induced a cell cycle arrest and triggered apoptosis and modulated the expression of cell growth, cell cycle and cell apoptosis regulators. Moreover, CuE inhibited the PI3K/Akt/mTOR pathway and epithelial–mesenchymal transition (EMT), which suppressed the invasion and metastasis of OS. In addition, we also found that CuE inhibited OS cell growth in vivo. Taken together, our study demonstrated that CuE could inhibit OS tumour growth and invasion through inhibiting the PI3K/Akt/mTOR signalling pathway. Our findings suggest that CuE can be considered to be a promising anti-cancer agent for OS.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bo Li ◽  
Lu Zhang

Abstract Background Circular RNA (circRNA) is recently found to participate in the regulation of tumor progression, including ovarian cancer. However, the application of circRNA SET domain bifurcated histone lysine methyltransferase 1 (circSETDB1) as a therapeutic target in serous ovarian cancer (SOC) remains to be elucidated. Herein, circSETDB1 role in SOC malignant progression and underlying mechanism are revealed. Methods The expression of circSETDB1, microRNA-129-3p (miR-129-3p) and mitogen-activated protein kinase kinase kinase 3 (MAP3K3) messenger RNA (mRNA) was detected by quantitative real-time polymerase chain reaction. Protein abundance was determined by western blot analysis. Cell proliferation, apoptosis, invasion and migration were demonstrated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine assays, flow cytometry analysis, transwell invasion assay and wound-healing assay, respectively. The interaction between miR-129-3p and circSETDB1 or MAP3K3 was predicted by online database, and identified by mechanism assays. The effect of circSETDB1 knockdown on tumor formation in vivo was unveiled by mouse model experiment. Results CircSETDB1 and MAP3K3 expression were apparently upregulated, whereas miR-129-3p expression was downregulated in SOC tissues and cells in comparison with normal fallopian tube tissues or normal ovarian epithelial cells. CircSETDB1 knockdown inhibited cell proliferation, invasion and migration, but induced cell apoptosis in SOC cells. Additionally, miR-129-3p inhibitor impaired circSETDB1 silencing-mediated SOC malignant progression. MiR-129-3p repressed SOC cell processes via binding to MAP3K3. Furthermore, circSETDB1 knockdown suppressed tumor growth in vivo. Conclusion CircSETDB1 silencing repressed SOC malignant progression through miR-129-3p/MAP3K3 pathway. This study supports circSETDB1 as a new therapeutic target for SOC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Chen ◽  
He Wang ◽  
Xinyu Geng ◽  
Dongze Zhang ◽  
Zhengyu Zhu ◽  
...  

Abstract Background Encouraged by the goal of developing an effective treatment strategy for prostate cancer, this study explored the mechanism involved in metformin-mediated inhibition of AR-negative prostate cancer. Methods Cell behaviors of DU145 and PC3 cells were determined by CCK8 test, colony formation experiment and scratch test. Flow cytometry was used to detect cell cycle distribution. Cell autophagy was induced with metformin, and an autophagy inhibitor, 3-MA, was used to assess the level of autophagy. Detection of LC3B by immunofluorescence was conducted to determine autophagy level. Cell proliferation, autophagy and cell cycle were examined by performing Western blot. DU145 and PC3 cell lines were transfected with AMPK siRNA targeting AMPK-α1 and AMPK-α2. Tumor formation experiment was carried out to evaluate the anti-prostate cancer effect of metformin in vivo. Results The inhibitory effect of metformin on the proliferation of prostate cancer cell lines was confirmed in this study, and the mechanism of such an effect was related to autophagy and the block of cell cycle at G0/G1 phase. Metformin also induced the activation of AMPK, markedly promoted expression of LC3II, and down-regulated the expression of p62/SQSTM1. Animal experiments showed that the tumor volume of metformin group was smaller, meanwhile, the levels of p-AMPK (Thr172) and LC3B were up-regulated and the Ki-67 level was down-regulated, without abnormalities in biochemical indicators. Conclusion This study found that autophagy induction might be the mechanism through which metformin suppressed the growth of AR-negative prostate cancer. Moreover, the activation of AMPK/autophagy pathway might be a therapeutically effective for treating AR-negative prostate cancer in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xueliang Yang ◽  
Quan Sun ◽  
Yongming Song ◽  
Wenli Li

Background. Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC. Methods. The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC50 of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 in vivo. Results. circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells. Conclusion. circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.


Author(s):  
Chen Zhong ◽  
Qian Yu ◽  
Yucong Peng ◽  
Shengjun Zhou ◽  
Zhendong Liu ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) contribute to multiple biological processes in human glioblastoma (GBM). However, identifying a specific lncRNA target remains a challenge. In this study, bioinformatics methods and competing endogenous RNA (ceRNA) network regulatory rules were used to identify GBM-related lncRNAs and revealed that OXCT1 antisense RNA 1 (OXCT1-AS1) is a potential therapeutic target for the treatment of glioma. Methods Based on the Gene Expression Omnibus (GEO) dataset, we identified differential lncRNAs, microRNAs and mRNAs and constructed an lncRNA-associated ceRNA network. The novel lncRNA OXCT1-AS1 was proposed to function as a ceRNA, and its potential target miRNAs were predicted through the database LncBase Predicted v.2. The expression patterns of OXCT1-AS1 in glioma and normal tissue samples were measured. The effect of OXCT1-AS1 on glioma cells was checked using the Cell Counting Kit 8 assay, cell colony formation assay, Transwell assay and flow cytometry in vitro. The dual-luciferase activity assay was performed to investigate the potential mechanism of the ceRNA network. Finally, orthotopic mouse models of glioma were created to evaluate the influence of OXCT1-AS1 on tumour growth in vivo. Results In this study, it was found that the expression of lncRNA OXCT1-AS1 was upregulated in both The Cancer Genome Atlas (TCGA) GBM patients and GBM tissue samples, and high expression of OXCT1-AS1 predicted a poor prognosis. Suppressing OXCT1-AS1 expression significantly decreased GBM cell proliferation and inhibited cell migration and invasion. We further investigated the potential mechanism and found that OXCT1-AS1 may act as a ceRNA of miR-195 to enhance CDC25A expression and promote glioma cell progression. Finally, knocking down OXCT1-AS1 notably attenuated the severity of glioma in vivo. Conclusion OXCT1-AS1 inhibits glioma progression by regulating the miR-195-5p/CDC25A axis and is a specific tumour marker and a novel potential therapeutic target for glioma treatment.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2021 ◽  
Author(s):  
Zhewen Zheng ◽  
Xue Zhang ◽  
Jian Bai ◽  
Long Long ◽  
Di Liu ◽  
...  

Abstract BackgroundPhosphoglucomutase 1(PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) is unknown. Here, we studied the functions and mechanisms of PGM1 in CRC.Methods We verified PGM-1 as a DEG by a comprehensive strategy of the TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissue were identified by qRT-PCR, WB, and IHC staining in a tissue microarray. PGM1 functions were analyzed using CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated using tumor formation in vivo.ResultsPGM1 mRNA and protein were both reduced in CRC and the reduction was related to CRC pathology and overall survival. PGM1 knockdown stimulated both proliferation and colony formation, promoting cell cycle arrest and apoptosis while overexpression has opposite effects in CRC cells both in vivo and in vitro. Furthermore, we lined the actions of PGM1 to the PI3K/ AKT pathway. ConclusionWe verified that PGM1 suppresses CRC through the PI3K/ AKT pathway. These results suggest the potential for targeting PGM1 in CRC therapies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chen Wang ◽  
Shiqing Shao ◽  
Li Deng ◽  
Shelian Wang ◽  
Yongyan Zhang

Abstract Background Radiation resistance is a major obstacle to the prognosis of cervical cancer (CC) patients. Many studies have confirmed that long non-coding RNAs (lncRNAs) are involved in the regulation of radiosensitivity of cancers. However, whether small nucleolar RNA host gene 12 (SNHG12) regulates the radiosensitivity of CC remains unknown. Methods Quantitative real-time polymerase chain reaction was used to measure the expression levels of SNHG12 and microRNA-148a (miR-148a). The radiosensitivity of cells was evaluated by clonogenic assay. Flow cytometry and caspase-3 activity assay were performed to assess the apoptosis ability and cell cycle distribution of cells. Besides, dual-luciferase reporter and RNA immunoprecipitation assay were used to verify the interaction between miR-148a and SNHG12 or cyclin-dependent kinase 1 (CDK1). Also, the protein levels of CDK1, CCND1 and γ-H2AX were detected by western blot analysis. Furthermore, in vivo experiments were conducted to verify the effect of SNHG12 on CC tumor growth. Ki-67 and TUNEL staining were employed to evaluate the proliferation and apoptosis rates in vivo. The hematoxylin and eosin (HE) staining were employed to evaluate the tumor cell morphology. Results SNHG12 was upregulated in CC tissues and cells, and its knockdown improved the radiosensitivity by promoting the radiation-induced apoptosis and cell cycle arrest of CC cells. Also, miR-148a could be sponged by SNHG12 and could target CDK1. MiR-148a inhibitor or CDK1 overexpression could invert the promotion effect of silenced-SNHG12 on CC radiosensitivity. Meanwhile, SNHG12 interference reduced the tumor growth of CC, increased miR-148a expression, and inhibited CDK1 level in vivo. Conclusion LncRNA SNHG12 promoted CDK1 expression to regulate the sensitivity of CC cells to radiation through sponging miR-148a, indicating that SNHG12 could be used as a potential biomarker to treat the radiotherapy resistance of CC patients.


2020 ◽  
Author(s):  
Yibing Li ◽  
Jianing Huo ◽  
Junjian He ◽  
Haining Ma ◽  
Xiaoxin Ma

Abstract Background: Emerging evidence shows that abnormal expression of long non-coding RNA is involved in the occurrence and development of various tumors. LncRNA MONC is abnormally expressed in head and neck squamous cell carcinoma (HNSCC), lung cancer, colorectal cancer, and acute megakaryocytic leukemia, but the biological function and potential regulatory mechanism of MONC in endometrial cancer stem cells (ECSCs) and endometrial cancer cells (ECCs) have not been studied. In this study, we aimed to explore the tumor suppressive effect and mechanism of MONC in regulating ECSCs and ECCs. Methods: The expression of genes was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression of proteins was detected by Western blot. The interplay of LncRNA-miRNA-mRNA was verified using the luciferase assay. The growth rate of ECSC spheroids was detected by sphere formation assay. Cell proliferation was detected by CCK-8 assay. The cell invasion was detected by transwell invasion assay. Cell cycle was detected by Cell cycle analysis.Cell apoptosis was detected by the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double-staining assay. Animal study was conducted to evaluate the effect of MONC combined with miR-636 on tumor growth in vivo. Results: Low MONC expression in endometrial carcinoma (EC), which directly inhibits the malignant biological behavior of ECSCs and ECCs by directly inhibiting miR-636. Simultaneously, miR-636 may indirectly reduce the expression of MONC. Down-regulation of miR-636 may promote GLCE expression by targeting the 3'-untranslated region (UTR) of the downstream gene GLCE, thereby inhibiting the progression of ECSCs. MONC combined with miR-636 inhibited the Notch signaling pathway and tumor epithelial-to-mesenchymal transition (EMT) process. In addition, we verified the tumor suppressive effect of MONC in nude mice, miR-636 can rescue the tumor suppressive effect of overexpressing MONC, and this effect is more obvious in ECSC. Conclusion: MONC inhibits the malignant phenotypes of ECSCs and ECCs by regulating the miR-636/GLCE axis. The MONC/miR-636/GLCE axis may provide novel treatment avenues for human EC.


2020 ◽  
Author(s):  
Xing Zeng ◽  
Zhiquan Hu ◽  
Yuanqing Shen ◽  
Xian Wei ◽  
Jiahua Gan ◽  
...  

Abstract BackgroundAccumulating evidence indicates miR-5195-3p exerts tumor suppressive role in several tumors. However, there is limited research on the clinical significance and biological function of miR-5195-3p in prostate cancer (PCa).MethodsExpression levels of miR-5195-3p and Cyclin L1 (CCNL1) were determined using quantitative real-time PCR. The clinical significance of miR-5195-3p in PCa patients was evaluated using Kaplan-Meier survival analysis and Cox regression models. Cell proliferation and cell cycle distribution were measured by CCK-8 assay and flow cytometry, respectively. The association between miR-5195-3p and CCNL1 was analyzed by luciferase reporter assay.ResultsMiR-5195-3p expression levels were significantly downregulated in 69 paired PCa tissues compared with matched adjacent normal tissues. The decreased miR-5195-3p expression was associated with Gleason score and TNM stage, as well as worse survival prognosis. The in vitro experiments showed that miR-5195-3p overexpression suppressed the proliferation and cell cycle G1/S transition in PC-3 and DU145 cells. Elevated miR-5195-3p abundance was also demonstrated to impair tumor formation in vivo using PC-3 xenografts. Mechanistically, Cyclin L1 (CCNL1) was a direct target of miR-5195-3p in PCa cells, which was inversely correlated with miR-5195-3p in PCa tissues. Importantly, CCNL1 knockdown imitated, while overexpression reversed the effects of miR-5195-3p overexpression on PCa cell proliferation and cell cycle G1/S transition.ConclusionsOur data suggests that miR-5195-3p functions as a tumor suppressor via downregulating G1/S related CCNL1 expression in PCa.


Sign in / Sign up

Export Citation Format

Share Document