scholarly journals Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action

2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Guo ◽  
Mengying Li ◽  
Xiaoli Sun ◽  
Yuhang Wang ◽  
Liying Yang ◽  
...  

Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. With emerging resistance against polymyxins, synergistic combinations of drugs are being investigated as a new therapeutic approach. Capsaicin is a common constituent of the human diet and is widely used in traditional alternative medicines. The present study evaluated the antibacterial activities of capsaicin in combination with colistin against three unrelated colistin-resistant Acinetobacter baumannii strains in vitro and in vivo, and then further studied their synergistic mechanisms. Using the checkerboard technique and time-kill assays, capsaicin and colistin showed a synergistic effect on colistin-resistant A. baumannii. A mouse bacteremia model confirmed the in vivo effects of capsaicin and colistin. Mechanistic studies shown that capsaicin can inhibit the biofilm formation of both colistin-resistant and non-resistant A. baumannii. In addition, capsaicin decreased the production of intracellular ATP and disrupted the outer membrane of A. baumannii. In summary, the synergy between these drugs may enable a lower concentration of colistin to be used to treat A. baumannii infection, thereby reducing the dose-dependent side effects. Hence, capsaicin–colistin combination therapy may offer a new treatment option for the control of A. baumannii infection.

2021 ◽  
Vol 14 (8) ◽  
pp. 823
Author(s):  
Tsung-Ying Yang ◽  
Sung-Pin Tseng ◽  
Heather Nokulunga Dlamini ◽  
Po-Liang Lu ◽  
Lin Lin ◽  
...  

The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O′-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


1998 ◽  
Vol 42 (9) ◽  
pp. 2188-2192 ◽  
Author(s):  
Jeffrey R. Aeschlimann ◽  
Michael J. Rybak

ABSTRACT Quinupristin-dalfopristin (Q-D) is a new water-soluble, semisynthetic antibiotic that is derived from natural streptogramins and that is combined in a 30:70 ratio. A number of studies have described the pharmacodynamic properties of this drug, but most have investigated only staphylococci or streptococci. We evaluated the relationship between Q-D, quinupristin (Q), and/or dalfopristin (D) susceptibility parameters and antibacterial activities against 22 clinical isolates of vancomycin-resistant Enterococcus faecium (VREF) by using the concentration-time-kill-curve method and by measuring postantibiotic effects. Q-D, Q, and D MICs and minimum bactericidal concentrations (MBCs) ranged from 0.125 to 1 and 0.25 to 64, 8 to 512 and >512, and 2 to 8 and 8 to 512 μg/ml, respectively. There were no significant relationships between susceptibilities to the individual components and the susceptibilities to the Q-D combination product. In the time-kill-curves studies, Q-D at a concentration of 6 μg/ml was at least bacteriostatic against all VREF tested. There was increased activity against more susceptible isolates when the isolates were grouped either by Q-D MBCs or by Q MICs. By multivariate regression analyses, the percent change in the inoculum from that at the baseline was significantly correlated with the Q MIC (R = 0.74; P = 0.008) and the Q-D concentration-to-MBC ratio (R = 0.58;P = 0.02) and was inversely correlated with the Q-D MBC-to-MIC ratio (R = 0.68; P = 0.003). A strong correlation existed between the killing rate and the Q-D concentration-to-MBC ratio (R = 0.99;P < 0.0001). Time to 99.9% killing was best correlated with the Q-D MBC (R = 0.96;P < 0.0001). The postantibiotic effect ranged from 0.2 to 3.2 h and was highly correlated with the Q-D concentration-to-MBC ratio (R = 0.96;P < 0.0001) and was less highly correlated with the Q MIC (R = 0.42; P = 0.04). Further study of these relationships with in vitro or in vivo infection models that simulate Q-D pharmacokinetics should further define the utility of these pharmacodynamic parameters in the prediction of Q-D activity for the treatment of VREF infections in humans.


Author(s):  
Danielle A. Nicklas ◽  
Emily C. Maggioncalda ◽  
Elizabeth Story-Roller ◽  
Benjamin Eichelman ◽  
Chavis Tabor ◽  
...  

The incidence of nontuberculous mycobacterial diseases in the US is rising and has surpassed tuberculosis. Most notable among the nontuberculous mycobacteria is Mycobacteroides abscessus , an emerging environmental opportunistic pathogen capable of causing chronic infections. M. abscessus disease is difficult to treat and the current treatment recommendations include repurposed antibiotics, several of which are associated with undesirable side effects. In this study, we have evaluated the activity of omadacycline, a new tetracycline derivative, against M. abscessus using in vitro and in vivo approaches. Omadacycline exhibited an MIC 90 of 0.5 μg/ml against a panel of 32 contemporary M. abscessus clinical isolates several of which were resistant to antibiotics that are commonly used for treatment of M. abscessus disease. Omadacycline when combined with clarithromycin, azithromycin, cefdinir, rifabutin or linezolid also exhibited synergism against several M. abscessus strains and did not exhibit antagonism when combined with an additional nine antibiotics also commonly considered to treat M. abscessus disease. Concentration-dependent activity of omadacycline was observed in time-kill assessments. Efficacy of omadacycline was evaluated in a mouse model of lung infection against four M. abscessus strains. A dose equivalent to the 300 mg standard oral human dose was used. Compared to the untreated control group, within four weeks of treatment, 1 to 3 log 10 fewer M. abscessus colony forming units were observed in the lungs of mice treated with omadacycline. Treatment outcome was biphasic, with bactericidal activity observed after the first two weeks of treatment against all four M. abscessus strains.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 516
Author(s):  
Vipavee Rodjun ◽  
Jantana Houngsaitong ◽  
Preecha Montakantikul ◽  
Taniya Paiboonvong ◽  
Piyatip Khuntayaporn ◽  
...  

Drug-resistant Acinetobacter baumannii (A. baumannii) infections are a critical global problem, with limited treatment choices. This study aims to determine the in vitro activities of colistin–sitafloxacin combinations against multidrug-, carbapenem- and colistin-resistant A. baumannii (MDR-AB, CRAB, CoR-AB, respectively) clinical isolates from tertiary care hospitals. We used the broth microdilution checkerboard and time-kill methods in this study. Synergy was found using both methods. The colistin–sitafloxacin combination showed synergy in MDR-AB, CRAB, and CoR-AB isolates (3.4%, 3.1%, and 20.9%, respectively). No antagonism was found in any type of drug-resistant isolate. The majority of CoR-AB isolates became susceptible to colistin (95.4%). The time-kill method also showed that this combination could suppress regrowth back to the initial inocula of all representative isolates. Our results demonstrated that the colistin–sitafloxacin combination might be an interesting option for the treatment of drug-resistant A. baumannii. However, further in vivo and clinical studies are required.


Author(s):  
Wentao Ni ◽  
Deqing Yang ◽  
Jie Guan ◽  
Wen Xi ◽  
Dexun Zhou ◽  
...  

Abstract Objectives Carbapenem-resistant Klebsiella pneumoniae (CR-KP) infections represent severe threats to public health worldwide. The aim of this study was to assess potential synergistic interaction between tigecycline and aminoglycosides via in vitro and in vivo studies. Methods Antibiotic resistance profiles and molecular characteristics of 168 CR-KP clinical isolates were investigated by susceptibility testing, PCR and MLST. Chequerboard tests and time–kill assays were performed for 20 CR-KP isolates to evaluate in vitro synergistic effects of tigecycline combined with aminoglycosides. A tissue-cage infection model of rats was established to evaluate in vivo synergistic effects. Different doses of tigecycline and aminoglycosides alone or in combination were administered for 7 days via tail vein injection. Antibiotic efficacy was evaluated in tissue-cage fluid and emergence of resistance was screened. Results The chequerboard tests showed that this combination displayed synergistic or partial synergistic activity against CR-KP. The time–kill assays further demonstrated that strong synergistic effects of such a combination existed against isolates that were susceptible to both drugs but for resistant isolates no synergy was observed if clinical pharmacokinetics were taken into consideration. The in vivo study showed that the therapeutic effectiveness of combination therapies was better than that of monotherapy for susceptible isolates, suggesting in vivo synergistic effects. Furthermore, combinations of tigecycline with an aminoglycoside showed significant activity in reducing the occurrence of tigecycline-resistant mutants. Conclusions Compared with single drugs, tigecycline combined with aminoglycosides could exert synergistic effects and reduce the emergence of tigecycline resistance. Such a combination might be an effective alternative when treating CR-KP infections in clinical practice.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 101 ◽  
Author(s):  
Nagaia Ciacci ◽  
Selene Boncompagni ◽  
Felice Valzano ◽  
Lisa Cariani ◽  
Stefano Aliberti ◽  
...  

Stenotrophomonas maltophilia is an emerging global opportunistic pathogen, responsible for a wide range of human infections, including respiratory tract infections. Intrinsic multidrug resistance and propensity to form biofilms make S. maltophilia infections recalcitrant to treatment. Colistin is among the second-line options in case of difficult-to-treat S. maltophilia infections, with the advantage of being also administrable by nebulization. We investigated the potential synergism of colistin in combination with N-acetylcysteine (NAC) (a mucolytic agent with antioxidant and anti-inflammatory properties) against S. maltophilia grown in planktonic phase and biofilm. Eighteen S. maltophilia clinical isolates (comprising three isolates from cystic fibrosis (CF) and two trimethoprim-sulfamethoxazole (SXT)-resistant strains) were included. Checkerboard assays showed a synergism of colistin/NAC combinations against the strains with colistin Minimum Inhibitory Concentration (MIC) >2 µg/mL (n = 13), suggesting that NAC could antagonize the mechanisms involved in colistin resistance. Nonetheless, time–kill assays revealed that NAC might potentiate colistin activity also in case of lower colistin MICs. A dose-dependent potentiation of colistin activity by NAC was also clearly observed against S. maltophilia biofilms, also at sub-MIC concentrations. Colistin/NAC combinations, at concentrations likely achievable by topical administration, might represent a valid option for the treatment of S. maltophilia respiratory infections and should be examined further.


2017 ◽  
Vol 42 (4) ◽  
pp. 1657-1669 ◽  
Author(s):  
YongTao Li ◽  
JianRong Huang ◽  
LanJuan Li ◽  
LinSheng Liu

Background/Aims: Pseudomonas aeruginosa (PA) is one of the major opportunistic pathogens which can cause chronic lung infection of cystic fibrosis (CF). The formation of PA biofilm promotes CF development and restricts the antimicrobial efficacies of current antibiotics. Methods: The antimicrobial effects of azithromycin (AZM) and berberine (BER) alone and in combination were evaluated using microdilution method, checkerboard assay, time-kill test, qRT-PCR analysis and absorption method. The treatments of AZM and/or BER were further evaluated in an animal lung infection model via observing survival rate, bacterial burden and histopathology of lung, the levels of pro-/anti-inflammatory cytokines. Results: AZM-BER were demonstrated to be synergistic against ten clinical PA isolates as well as the standard reference PA ATCC27853, in which PA03 was the most susceptible isolate to AZM-BER with FICI of 0.13 and chosen for subsequent experiments. The synergism of AZM-BER was further confirmed against PA03 in time-kill test and scanning electron microscope (SEM) at their concentrations showing synergism. In PA03, we found that AZM-BER could significantly attenuate productions of a series of virulence factors including alginate, LasA protease, LasB protease, pyoverdin, pyocyanin, chitinase as well as extracellular DNA, and remarkably inhibit the levels of quorum sensing (QS) molecules and the expressions of lasI, lasR, rhlI, rhlR at 1/2×MIC, 1×MIC and 2×MIC. In the infection model, the mice survival were increased markedly, the inflammations of infected lungs were improved greatly along with reduced IL-6, IL-8 and ascended IL-10 at 0.8 mg/kg of AZM combined with 3.2 mg/kg of BER. Conclusion: BER might be a promising synergist to enhance the antimicrobial activity of AZM in vitro and in vivo.


2007 ◽  
Vol 51 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
Michael J. Pucci ◽  
Jijun Cheng ◽  
Steven D. Podos ◽  
Christy L. Thoma ◽  
Jane A. Thanassi ◽  
...  

ABSTRACT The activities of several tricyclic heteroaryl isothiazolones (HITZs) against an assortment of gram-positive and gram-negative clinical isolates were assessed. These compounds target bacterial DNA replication and were found to possess broad-spectrum activities especially against gram-positive strains, including antibiotic-resistant staphylococci and streptococci. These included methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-nonsusceptible staphylococci, and quinolone-resistant strains. The HITZs were more active than the comparator antimicrobials in most cases. For gram-negative bacteria, the tested compounds were less active against members of the family Enterobacteriaceae but showed exceptional potencies against Haemophilus influenzae, Moraxella catarrhalis, and Neisseria spp. Good activity against several anaerobes, as well as Legionella pneumophila and Mycoplasma pneumoniae, was also observed. Excellent bactericidal activity against staphylococci was observed in time-kill assays, with an approximately 3-log drop in the numbers of CFU/ml occurring after 4 h of exposure to compound. Postantibiotic effects (PAEs) of 2.0 and 1.7 h for methicillin-susceptible S. aureus and MRSA strains, respectively, were observed, and these were similar to those seen with moxifloxacin at 10× MIC. In vivo efficacy was demonstrated in murine infections by using sepsis and thigh infection models. The 50% protective doses were ≤1 mg/kg of body weight against S. aureus in the sepsis model, while decreases in the numbers of CFU per thigh equal to or greater than those detected in animals treated with a standard dose of vancomycin were seen in the animals with thigh infections. Pharmacokinetic analyses of treated mice indicated exposures similar to those to ciprofloxacin at equivalent dose levels. These promising initial data suggest further study on the use of the HITZs as antibacterial agents.


2011 ◽  
Vol 55 (7) ◽  
pp. 3603-3608 ◽  
Author(s):  
G. A. Denys ◽  
J. C. Davis ◽  
P. D. O'Hanley ◽  
J. T. Stephens

ABSTRACTWe evaluated thein vitroandin vivoactivity of a novel topical myeloperoxidase-mediated antimicrobial, E-101 solution, against 5 multidrug-resistantAcinetobacter baumanniiisolates recovered from wounded American soldiers. Time-kill studies demonstrated rapid bactericidal activity against allA. baumanniistrains tested in the presence of 3% blood. Thein vitrobactericidal activity of E-101 solution againstA. baumanniistrains was confirmed in a full-thickness excision rat model. Additionalin vivostudies appear warranted.


Sign in / Sign up

Export Citation Format

Share Document