scholarly journals Xuanfei Pingchuan Capsules Ameliorate Autophagy in Human Bronchial Epithelial Cells by Inhibiting p38 Phosphorylation

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoming Xue ◽  
Lihong Meng ◽  
Hongyu Cai ◽  
Yaoqin Sun ◽  
Ye Zhang ◽  
...  

Background: This study aimed to investigate the protective effect of Xuanfei Pingchuan Capsules (XFPC) on autophagy and p38 phosphorylation in human bronchial epithelial (HBE) cells induced by cigarette smoke extract (CSE).Methods: HBE cells were divided into five groups: blank, CSE, low XFPC dose (XFPC-L), medium XFPC dose (XFPC-M), and high XFPC dose (XFPC-H). HBE cells were induced by CSE to establish a cell model for chronic obstructive pulmonary disease, and different doses of XFPC medicated serum were used to treat the cells. The Cell Counting Kit-8 was used to detect cell viability. Flow cytometry was used to detect cell apoptosis. Fluorescence microscopy and the expression level of microtubule-associated protein light chain 3 (LC3)-II in immunohistochemical method were used to observe autophagy in cells. Western blot was used to detect the protein expression level of p38, phospho-p38 (p-p38), LC3-I, LC3-II and Beclin 1. Real-time polymerase chain reaction was used to detect the expression of LC3-I, LC3-II and Beclin 1 on mRNA level.Results: Compared with the blank group, the cell viability of the CSE group was significantly decreased, and apoptosis and the level of autophagy in cells were significantly increased. The mRNA and protein expression of LC3-I, LC3-II, Beclin 1 and the protein level of p-p38 were significantly increased in the CSE-HBE cells. Compared to the CSE group, the different doses of XFPC medicated serum increased cell viability, decreased cell apoptosis, and inhibited mRNA and protein expression of LC3-I, LC3-II, Beclin 1 and protein level of p-p38. These results were especially observed in the group XFPC-H. After adding a p38 agonist, the therapeutic effect of XFPC on cell viability and autophagy was suppressed.Conclusion: XFPC significantly increased cell viability in a CSE-induced HBE cell model for chronic obstructive pulmonary disease through inhibiting the level of autophagy mediated by phosphorylation of p38.

2019 ◽  
Vol 14 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Alessia Santoro ◽  
Carlo Tomino ◽  
Giulia Prinzi ◽  
Palma Lamonaca ◽  
Vittorio Cardaci ◽  
...  

Background: The morbidity and mortality associated with tobacco smoking is well established. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhibits drug-induced apoptosis. Objective: To understand the genetic, molecular and cellular biology of addiction, chronic obstructive pulmonary disease and lung cancer. Methods: The search for papers to be included in the review was performed during the months of July- September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus (http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of Knowledge (http://apps.webofknowledge.com/). The following searching terms: “nicotine”, “nicotinic receptor”, and “addiction” or “COPD” or “lung cancer” were used. </P><P> Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible studies that were not indexed by the above-mentioned databases. </P><P> New experimental data on the ability of nicotine to promote transformation of human bronchial epithelial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. Results: Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor upregulation induces complete bronchial epithelial cells transformation. Conclusion: Genetic studies highlight the involvement of nicotinic receptors variants in addiction, chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine dependence subjects, under patent, are reported.


2018 ◽  
Vol 36 (5) ◽  
pp. 312-318 ◽  
Author(s):  
Xin-Fang Zhang ◽  
Qin Qin ◽  
Wen-Ye Geng ◽  
Chuan-Wei Jiang ◽  
Yong Liu ◽  
...  

Objectives Decreased lung function in chronic obstructive pulmonary disease (COPD) is correlated with abnormal excitability of the respiratory centre where orexin neuropeptides from the hypothalamus are responsible for regulating respiration. We hypothesised that improvements in pulmonary function with electroacupuncture (EA) may be related to orexins in a rat model of COPD. Methods The COPD model was established by cigarette smoke exposure and lipopolysaccharide injection. Modelled rats received EA at BL13 and ST36 for two weeks, after which lung function was tested. Orexin levels in the hypothalamus and medulla were detected by ELISA, while mRNA/protein expression and localisation of orexins and their receptors were investigated using real time PCR, Western blotting and immunohistochemistry, respectively. Results The decrease in lung function observed in COPD rats was improved after EA treatment. Orexin levels in the hypothalamus and medulla were significantly higher in COPD rats than in normal rats, but were significantly reduced in the EA-treated group. There was a negative correlation between orexin content and lung function. In the hypothalamus, mRNA and protein expression and immunoreactivity of orexins were significantly higher in the COPD group than in the normal group, but a significant decrease was observed after EA. In the medulla, the expression and immunoreactivity of orexin receptors were significantly higher in the COPD group than in the normal group, but a significant decrease was observed after EA. Conclusions The positive effect of EA on pulmonary function in COPD rats may be related to downregulation of orexins and their receptors in the medulla.


Sign in / Sign up

Export Citation Format

Share Document