scholarly journals Tibetan Medicine for Diabetes Mellitus: Overview of Pharmacological Perspectives

2021 ◽  
Vol 12 ◽  
Author(s):  
Li-Shan Yan ◽  
Brian Chi-Yan Cheng ◽  
Shuo-Feng Zhang ◽  
Gan Luo ◽  
Chao Zhang ◽  
...  

Diabetes mellitus (DM) and its complications pose a major public health threat which is approaching epidemic proportions globally. Current drug options may not provide good efficacy and even cause serious adverse effects. Seeking safe and effective agents for DM treatment has been an area of intensive interest. As a healing system originating in Tibet, Traditional Tibetan Medicine (TTM) has been widely used by Tibetan people for the prevention and treatment of DM and its complications for hundreds of years. Tibetan Materia Medica (TMM) including the flower of Edgeworthia gardneri (Wall.) Meisn., Phyllanthi Fructus, Chebulae Fructus, Huidouba, and Berberidis Cortex are most frequently used and studied. These TMMs possess hypoglycemic, anti-insulin resistant, anti-glycation, lipid lowering, anti-inflammatory, and anti-oxidative effects. The underlying mechanisms of these actions may be related to their α-glucosidase inhibitory, insulin signaling promoting, PPARs-activating, gut microbiota modulation, islet β cell-preserving, and TNF-α signaling suppressive properties. This review presents a comprehensive overview of the mode and mechanisms of action of various active constituents, extracts, preparations, and formulas from TMM. The dynamic beneficial effects of the products prepared from TMM for the management of DM and its complications are summarized. These TMMs are valuable materia medica which have the potential to be developed as safe and effective anti-DM agents.

2012 ◽  
Vol 1 ◽  
Author(s):  
Éliane Picard-Deland ◽  
Charles Lavigne ◽  
Julie Marois ◽  
Julie Bisson ◽  
S. John Weisnagel ◽  
...  

AbstractPrevious studies have shown that fish protein, as well as marine n-3 PUFA, may have beneficial effects on cardiovascular risk profile. The objectives of this study were to investigate the combined effects of fish gelatine (FG) and n-3 PUFA supplementation on (1) energy intake and body weight, (2) lipid profile and (3) inflammatory and CVD markers in free-living insulin-resistant males and females. Subjects were asked to consume, in a crossover study design with two experimental periods of 8 weeks each, an n-3 PUFA supplement and n-3 PUFA supplement plus FG (n-3 PUFA + FG). n-3 PUFA + FG led to an increase in protein intake and a decrease in carbohydrate intake compared with n-3 PUFA (P < 0·02) in males and females. Sex–treatment interactions were observed for TAG (P = 0·03) and highly sensitive C-reactive protein (hsCRP) (P = 0·001) levels. In females, n-3 PUFA reduced plasma TAG by 8 % and n-3 PUFA + FG by 23 %, whereas in males, n-3 PUFA reduced plasma TAG by 25 % and n-3 PUFA + FG by 11 %. n-3 PUFA increased serum hsCRP by 13 % and n-3 PUFA + FG strongly reduced hsCRP by 40 % in males, whereas in females, n-3 PUFA reduced serum hsCRP by 6 % and n-3 PUFA + FG increased hsCRP by 20 %. In conclusion, supplementation with FG may enhance the lipid-lowering effect of marine n-3 PUFA in females and beneficially counteract the effect of n-3 PUFA on serum hsCRP in males. Further studies are needed to identify the sex-dependent mechanisms responsible for the divergent effects of FG on TAG and hsCRP levels in females and males, respectively.


2015 ◽  
Vol 309 (9) ◽  
pp. F755-F763 ◽  
Author(s):  
H.-H. Chang ◽  
H.-N. Chao ◽  
C. S. Walker ◽  
S.-Y. Choong ◽  
A. Phillips ◽  
...  

Renal depletion of myo-inositol (MI) is associated with the pathogenesis of diabetic nephropathy in animal models, but the underlying mechanisms involved are unclear. We hypothesized that MI depletion was due to changes in inositol metabolism and therefore examined the expression of genes regulating de novo biosynthesis, reabsorption, and catabolism of MI. We also extended the analyses from diabetes mellitus to animal models of dietary-induced obesity and hypertension. We found that renal MI depletion was pervasive across these three distinct disease states in the relative order: hypertension (−51%) > diabetes mellitus (−35%) > dietary-induced obesity (−19%). In 4-wk diabetic kidneys and in kidneys derived from insulin-resistant and hypertensive rats, MI depletion was correlated with activity of the MI-degrading enzyme myo-inositol oxygenase (MIOX). By contrast, there was decreased MIOX expression in 8-wk diabetic kidneys. Immunohistochemistry localized the MI-degrading pathway comprising MIOX and the glucuronate-xylulose (GX) pathway to the proximal tubules within the renal cortex. These findings indicate that MI depletion could reflect increased catabolism through MIOX and the GX pathway and implicate a common pathological mechanism contributing to renal oxidative stress in metabolic disease.


2018 ◽  
Vol 46 (08) ◽  
pp. 1771-1789 ◽  
Author(s):  
Xiuping Chen ◽  
Jie Yu ◽  
Jingshan Shi

Diabetes mellitus (DM) has become one of the most challenging public health problems globally. The increasing prevalence and mortality rates call for more effective therapeutic agents, especially for DM complications. Traditional herbs have a long clinical application history for DM treatment. Puerarin is a natural isoflavone from Pueraria lobata (Wild.) Ohwi which has been consumed both as a functional food and herb in Eastern Asia countries. Documented data has shown that puerarin has cardio-protective, neuroprotective, anti-oxidative, anti-inflammatory and many other effects. In this review, we will summarize the beneficial effects and underlying mechanisms of puerarin on DM and complications. Puerarin may directly benefit DM by decreasing blood glucose levels, improving insulin resistance, protecting islets, inhibiting inflammation, decreasing oxidative stress and inhibiting Maillard reaction and advanced glycation end products (AGEs) formation. Furthermore, puerarin may also benefit DM indirectly by retarding and improving a series of DM complications, such as cardiovascular complications, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, etc. However, comprehensive studies of its effect and mechanisms are needed. In addition, its efficacy is relatively low, which is partially due to its pharmacokinetics profiles. Though puerarin shows low toxicity to experimental animals, its safety on human remains to be clarified. Collectively, we suggest that puerarin might be a potential adjuvant agent for the treatment of DM and DM complications in future.


2015 ◽  
Vol 10 (1-2) ◽  
pp. 353-364 ◽  
Author(s):  
Florian Ploberger

In this article I aim to describe the Tibetan formula Padma 28 from the perspective of traditional Chinese medicine (tcm) phytotherapy as practised in Europe. As a biomedical physician and tcm practitioner, familiar also with traditional Tibetan medicine (ttm), I would like to underline that these two Asian medical systems are on one hand fundamentally different based on culturally distinct concepts and practices of health and illness, including different body images. On the other hand, they can be, and in fact are, correlated with each other in practice via their shared specific materia medica. This article represents a first attempt at establishing an understanding via translation, by relating distinct ttm and tcm efficacies as well as my own personal tasting of the single ingredients of the Tibetan formula Padma 28. tcm terminology translated into English is relatively well established and may provide a lingua franca, other than predominant biomedicine, for communication about Tibetan and Chinese prescriptions, and about individual plants. From a tcm perspective, Padma 28 has an overall neutral or slightly cool temperature effect and an acrid, bitter, and slightly aromatic taste. This formula can be used to promote the movement of qi and blood in a mild way without injuring the yin. Furthermore, it strengthens the spleen qi and spleen yang. Responding to the regulatory context in Europe, certain ingredients in this Tibetan formula have been left out and substituted by others—a practice that is regarded as common in tcm formulations.


The prevalence of heart failure is markedly increased in individuals with diabetes mellitus. Numerous observational studies suggest that this increased risk for heart failure can be attributed to exacerbated vascular complications and the presence of increased risk factors in diabetic subjects. In addition, experimental studies revealed the presence of a number of distinct molecular alterations in the myocardium that occur independently of vascular disease and hypertension. Many of these molecular alterations are similarly observed in failing hearts of nondiabetic patients and have thus been proposed to contribute to the increased risk for heart failure in diabetes. The interest in understanding the underlying mechanisms of impaired cardio- vascular outcomes in diabetic individuals has much increased since the demonstration of cardioprotective effects of SGLT-2 inhibitors and GLP-1 receptor agonists in recent clinical trials. The current review therefore summarizes the distinct mechanisms that have been proposed to increase the risk for heart failure in diabetes mellitus.


2019 ◽  
Vol 25 (23) ◽  
pp. 2555-2568 ◽  
Author(s):  
Rajeev Taliyan ◽  
Sarathlal K. Chandran ◽  
Violina Kakoty

Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer’s Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.


2019 ◽  
Vol 17 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Alfonso Mate ◽  
Antonio J. Blanca ◽  
Rocío Salsoso ◽  
Fernando Toledo ◽  
Pablo Stiefel ◽  
...  

Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years.


2018 ◽  
Vol 16 (4) ◽  
pp. 368-375 ◽  
Author(s):  
Abdullah Shehab ◽  
Khalid Al-Rasadi ◽  
Mohamed Arafah ◽  
Ali T. Al-Hinai ◽  
Wael Al Mahmeed ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2305
Author(s):  
Wan-Ju Yeh ◽  
Jung Ko ◽  
Wei-Yi Cheng ◽  
Hsin-Yi Yang

High blood pressure is a crucial risk factor for many cardiovascular diseases, and a diet rich in whole-grain foods may modulate blood pressure. This study investigated the effects of dehulled adlay consumption on blood pressure in vivo. We initially fed spontaneous hypertensive rats diets without (SHR group) or with 12 or 24% dehulled adlay (SHR + LA and SHR + HA groups), and discovered that it could limit blood pressure increases over a 12-week experimental period. Although we found no significant changes in plasma, heart, and kidney angiotensin-converting enzyme activities, both adlay-consuming groups had lower endothelin-1 and creatinine concentrations than the SHR group; the SHR + HA group also had lower aspartate aminotransferase and uric acid levels than the SHR group did. We later recruited 23 participants with overweight and obesity, and they consumed 60 g of dehulled adlay daily for a six-week experimental period. At the end of the study, we observed a significant decrease in the group’s systolic blood pressure (SBP), and the change in SBP was even more evident in participants with high baseline SBP. In conclusion, our results suggested that daily intake of dehulled adlay had beneficial effects in blood-pressure management. Future studies may further clarify the possible underlying mechanisms for the consuming of dehulled adlay as a beneficial dietary approach for people at risk of hypertension.


Sign in / Sign up

Export Citation Format

Share Document