scholarly journals A Non-Invasive Method for Detection of Antihypertensive Drugs in Biological Fluids: The Salivary Therapeutic Drug Monitoring

2022 ◽  
Vol 12 ◽  
Author(s):  
Valeria Avataneo ◽  
Elvira Fanelli ◽  
Amedeo De Nicolò ◽  
Franco Rabbia ◽  
Alice Palermiti ◽  
...  

Objectives: Arterial hypertension is still the most frequent cause of cardiovascular and cerebrovascular morbidity and mortality. Antihypertensive treatment has proved effective in reduction of cardiovascular risk. Nevertheless, lifestyle interventions and pharmacological therapy in some cases are ineffective in reaching blood pressure target values, despite full dose and poly-pharmacological treatment. Poor adherence to medications is an important cause of treatment failure. Different methods to assess therapeutic adherence are currently available: Therapeutic drug monitoring in biological fluids has previously demonstrated its efficacy and reliability. Plasma and urine have been already used for this purpose, but they may be affected by some practical limitations. Saliva may represent a feasible alternative.Methods: Fourteen antihypertensive drugs and two metabolites were simultaneously tested in plasma, urine, and saliva. Tested molecules included: atenolol, nebivolol, clonidine, ramipril, olmesartan, telmisartan, valsartan, amlodipine, nifedipine, doxazosin, chlorthalidone, hydrochlorothiazide, indapamide, sacubitril, ramiprilat, and sacubitrilat. Therapeutic drug monitoring was performed using ultra-high performance liquid chromatography, coupled to tandem mass spectrometry (UHPLC-MS/MS). The method has been preliminarily evaluated in a cohort of hypertensive patients.Results: The method has been validated according to US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines. The application on a cohort of 32 hypertensive patients has demonstrated sensibility and specificity of 98% and 98.1%, respectively, with a good feasibility in real-life clinical practice.Conclusion: Saliva may represent a feasible biological sample for therapeutic drug monitoring by non-invasive collection, prompt availability, and potential accessibility also in out-of-clinic settings.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3117-3117 ◽  
Author(s):  
Stefanie L. Groenland ◽  
Andre M. Bergman ◽  
Alwin Huitema ◽  
Neeltje Steeghs

3117 Background: Abiraterone acetate is registered for the treatment of metastatic castration resistant prostate cancer. Pharmacokinetic (PK) exposure has been linked to efficacy, since patients with Cmin ≥ 8.4 ng/mL have a significantly longer progression free survival compared to patients with a Cmin below this threshold (7.4 vs. 12.2 months, p = 0.044) (Carton, 2017). At the recommended fixed dose of 1000 mg QD administered in a modified fasting state, 35% of patients do not reach this efficacy threshold (Carton, 2017), providing a strong rationale for therapeutic drug monitoring (TDM). Since a clinically relevant food effect has been established, concomitant intake of abiraterone and food could offer a cost-neutral solution in case of low exposure (Chi, 2015). This study aims to evaluate whether PK-guided abiraterone dosing is feasible and results in an increased proportion of patients with concentrations above the target. Methods: Patients starting regular treatment with abiraterone were included. PK sampling occurred 4, 8 and 12 weeks after start of treatment, and every 12 weeks thereafter. Abiraterone concentrations were measured and Cmin was calculated. In case of Cmin < 8.4 ng/mL and acceptable toxicity, a PK-guided intervention was advised. As a first step, concomitant intake of abiraterone and a light meal or a snack was advised. Results: In total, 35 patients were included, of which 18 patients (51%) had at least one Cmin < 8.4 ng/mL. These patients were advised to take abiraterone concomitantly with food, after which Cmin increased significantly from 5.6 (47%) ng/mL [mean (CV%)] to 40.6 (110%) ng/mL (p = 0.006) without additional toxicities. This intervention led to adequate exposure in 15 patients (83%). Seventeen patients had all Cmin levels ≥ 8.4 ng/mL, in these patients mean Cmin was 31.5 (65%) ng/mL. Conclusions: TDM of abiraterone was applied in clinical practice and proved to be feasible. Concomitant intake with food resulted into a significant increase in Cmin and offers a cost-neutral opportunity to optimize treatment for patients with low PK exposure. Up to 100 patients will be included to evaluate the effect of PK-guided abiraterone dosing on treatment efficacy. Clinical trial information: NL6695.


Author(s):  
Maria Mercedes De Zan

Chemometric optimization and validation of a method based on High Performance Liquid Chromatography (HPLC) using core – shell particles for the determination of Vancomycin (VMC) in human plasma is reported. The combination of the efficiency of the core-shell particles and the benefits of the design of experiments allowed the successful determination of VCM, even in presence of several interferents. Selectivity, linearity, accuracy and precision were accomplished according to the European Medicines Agency (EMA) guideline, within the concentration range of 1.00 – 60.0 μg/mL of VCM. It is noteworthy that this method requires small amount of sample and solvents, and the sample treatment is simple and no time-consuming. Thus, this method becomes a simple and high-throughput alternative to therapeutic drug monitoring in treated patients, as well as an analytical procedure that conforms to the principles of the green chemistry.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chiara Tersigni ◽  
Giulia Boiardi ◽  
Lorenzo Tofani ◽  
Elisabetta Venturini ◽  
Carlotta Montagnani ◽  
...  

Abstract Background Low plasma levels of first-line antitubercular drugs can be counted among the main causes of poor response to antitubercular therapy, and therapeutic drug monitoring has been proposed as a method to promote tailored treatments for both child and adult patients. The main aim of the study was to evaluate serum concentrations of isoniazid (INH) and rifampicin (RIF) and to investigate reasons for sub-therapeutic plasma concentrations in order to fix dosages. Methods Children with TB were prospectively enrolled from January to August 2019. Two venous blood samples were collected (the first at least 15 days after the beginning of antitubercular treatment, and the second between 1 and 8 weeks later). Plasma concentrations were determined by a validated high-performance liquid chromatography method. Results In all, 45 children were included. Seventy blood samples for INH plasma concentration were collected between 120 and 240 min after drug intake. Adjusting for dose (mg/kg/day) and time of INH administration, when considering three different age groups (≤ 2 years, 2–12 years, > 12 years), a statistically significant lower INH plasma concentration was observed in younger children compared to the older age groups in the multivariate analysis (p < 0.001 and p < 0.001). A total of 68 blood samples were evaluated for RIF concentrations. Both for INH and RIF a statistically significant lower plasma concentration was also observed in adolescents (p < 0.001). Fifteen children (15/45, 33%) presented drug concentrations under the referral therapeutic range. Conclusions Based on our findings, monitoring patients’ drug plasma concentrations in children under 2 years of age and in adolescents can make treatment more patient-tailored.


2017 ◽  
Vol 35 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
Ann Gils

Background: Biologicals provide a tight disease control but not all patients respond favourably to treatment. Some patients do not respond at all (primary non-responders), while other patients respond initially but show loss of response over time (secondary non-responders). Drug concentrations in the serum of patients can be monitored and correlated with biological, clinical or endoscopic response. Therapeutic thresholds have been defined for infliximab and adalimumab. The European Medicines Agency has approved 3 biosimilars of infliximab and new biosimilars are waiting approval. Key Messages: Distinguishing primary non-responders from patients with insufficient drug exposure during induction through drug serum concentration determination will improve drug efficacy. Current algorithms to guide treatment of patients with secondary loss of response take into account that patients with high titers of anti-drug antibodies (ADA) do not respond to dose intensification and that patients with therapeutic drug concentrations cannot be switched to biologicals within class. For patients in clinical remission, the cost of biological treatment can be decreased by dose tapering patients with supra-therapeutic concentrations and/or by switching patients with adequate drug concentrations and no formation of ADA to biosimilar, whereas efficacy can be increased by dose-intensifying patients with low or transient ADA and by switching patients with persistent ADA to biologicals within or out-off class. Conclusions: As an objective tool, therapeutic drug monitoring can identify patients who are eligible for dose tapering, intensification of treatment, cessation of treatment, switching within- or out-of-class and switching to biosimilar.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 132 ◽  
Author(s):  
Vivian Garzón ◽  
Daniel Pinacho ◽  
Rosa-Helena Bustos ◽  
Gustavo Garzón ◽  
Sandra Bustamante

Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.


Sign in / Sign up

Export Citation Format

Share Document