scholarly journals Long Non-coding RNA Rhabdomyosarcoma 2-Associated Transcript Regulates Angiogenesis in Endothelial Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Maha Alaqeeli ◽  
Dominique Mayaki ◽  
Sabah N. A. Hussain

Background: Long non-coding RNAs (lncRNAs) are non-coding RNAs that have more than 200 nucleotides. They have recently emerged as important regulators of angiogenesis. To identify novel lncRNAs that may be involved in the regulation of angiogenesis, we detected the mRNA of 84 lncRNAs in human umbilical vein endothelial cells (HUVECs) exposed to hypoxia for 24h. One of these, rhabdomyosarcoma 2-associated transcript (RMST), is significantly upregulated by hypoxia. Little is known about the presence and roles of RMST in EC function.Objective: The main objective of the study was to investigate the regulation of RMST in ECs and to determine its role in EC survival, proliferation, migration, and differentiation.Methods: Using qPCR, basal mRNA levels of 10 RMST isoforms in HUVECs were measured. Levels were then measured in response to 24h of hypoxia, 7days of differentiation in a co-culture assay, and exposure to four different angiogenesis factors. Functional roles of RMST in EC survival, migration, and differentiation were quantified by using a loss-of-function approach (transfection with single-stranded antisense LNA GapmeRs). EC survival was measured using cell counts and crystal violet assays. Cell migration and differentiation were measured using scratch wound healing and Matrigel® differentiation assays, respectively.Results: Five RMST isoforms (RMST-202, -203, -204, -206, and -207) were detected in HUVECs and human microvascular endothelial cells (HMEC-1s). Other types of vascular cells, including human aortic valve interstitial cells and human aortic smooth muscle cells, did not display this expression profile. RMST was significantly upregulated in response to 24h of hypoxia and in response to 7days of HUVEC co-culture with human lung fibroblasts. RMST was significantly downregulated by angiopoietin-2 (Ang-2), but not by VEGF, FGF-2, or angiopoietin-1 (Ang-1). Selective knockdown of RMST demonstrated that it promotes EC survival in response to serum deprivation. It is also required for VEGF- and Ang-1-induced EC survival and migration, but not for differentiation.Conclusion: We conclude that RMST is expressed in human ECs and that this expression is upregulated in response to hypoxia and during differentiation into capillary-like structures. We also conclude that RMST plays important roles in EC survival and migration.

2019 ◽  
Vol 17 (4) ◽  
pp. 379-387 ◽  
Author(s):  
Yan Sun ◽  
Xiao-li Liu ◽  
Dai Zhang ◽  
Fang Liu ◽  
Yu-jing Cheng ◽  
...  

Background:Intraplaque angiogenesis, the process of generating new blood vessels mediated by endothelial cells, contributes to plaque growth, intraplaque hemorrhage, and thromboembolic events. Platelet-derived Exosomes (PLT-EXOs) affect angiogenesis in multiple ways. The ability of miR-126, one of the best-characterized miRNAs that regulates angiogenesis, carried by PLT-EXOs to influence angiogenesis via the regulation of the proliferation and migration of endothelial cells is unknown. In this study, we aimed to investigate the effects of PLT-EXOs on angiogenesis by Human Umbilical Vein Endothelial Cells (HUVECs).Methods:We evaluated the levels of miR-126 and angiogenic factors in PLT-EXOs from Acute Coronary Syndrome (ACS) patients and healthy donors by real-time Polymerase Chain Reaction (PCR) and western blotting. We incubated HUVECs with PLT-EXOs and measured cell proliferation and migration with the Cell Counting Kit-8 assay and scratch assay, respectively. We also investigated the expression of miR-126 and angiogenic factors in HUVECs after exposure to PLT-EXOs by western blotting and real-time PCR.Results:PLT-EXOs from ACS patients contained higher levels of miR-126 and angiogenic factors, including Vascular Endothelial Growth Factor (VEGF), basic Fibroblast Growth Factor (bFGF), and Transforming Growth Factor Beta 1 (TGF-β1), than those from healthy donors (p<0.05). Moreover, the levels of exosomal miR-126 and angiogenic factors were increased after stimulation with thrombin (p<0.01). HUVEC proliferation and migration were promoted by treatment with activated PLT-EXOs (p<0.01); they were accompanied by the over-expression of miR-126 and angiogenic factors, including VEGF, bFGF, and TGF-β1 (p<0.01).Conclusion:Activated PLT-EXOs promoted the proliferation and migration of HUVECs, and the overexpression of miR-126 and angiogenic factors, thereby elucidating potential new therapeutic targets for intraplaque angiogenesis.


2002 ◽  
Vol 115 (12) ◽  
pp. 2475-2484 ◽  
Author(s):  
Valérie Vouret-Craviari ◽  
Christine Bourcier ◽  
Etienne Boulter ◽  
Ellen Van Obberghen-Schilling

Soluble mediators such as thrombin and sphingosine-1-phosphate regulate morphological changes in endothelial cells that affect vascular permeability and new blood vessel formation. Although these ligands activate a similar set of heterotrimeric G proteins, thrombin causes cell contraction and rounding whereas sphingosine-1-phosphate induces cell spreading and migration. A functional requirement for Rho family GTPases in the cytoskeletal responses to both ligands has been established, yet the dynamics of their regulation and additional signaling mechanisms that lead to such opposite effects remain poorly understood. Using a pull-down assay to monitor the activity of Rho GTPases in human umbilical vein endothelial cells, we find significant temporal and quantitative differences in RhoA and Rac1 activation. High levels of active RhoA rapidly accumulate in cells in response to thrombin whereas Rac1 is inhibited. In contrast, sphingosine-1-phosphate addition leads to comparatively weak and delayed activation of RhoA and it activates Rac1. In addition, we show here that sphingosine-1-phosphate treatment activates a Src family kinase and triggers recruitment of the F-actin-binding protein cortactin to sites of actin polymerization at the rim of membrane ruffles. Both Src and Rac pathways are essential for lamellipodia targeting of cortactin. Further, Src plays a determinant role in sphingosine-1-phosphate-induced cell spreading and migration. Taken together these data demonstrate that the thrombin-induced contractile and immobile phenotype in endothelial cells reflects both robust RhoA activation and Rac inhibition, whereas Src- and Rac-dependent events couple sphingosine-1-phosphate receptors to the actin polymerizing machinery that drives the extension of lamellipodia and cell migration.


2002 ◽  
Vol 92 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
Scott Earley ◽  
Leif D. Nelin ◽  
Louis G. Chicoine ◽  
Benjimen R. Walker

Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O2) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso- N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O2) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O2) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O2) exposure. ET-1 promoter activity after S-nitroso- N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


1998 ◽  
Vol 79 (01) ◽  
pp. 217-221 ◽  
Author(s):  
Koichi Kokame ◽  
Toshiyuki Miyata ◽  
Naoaki Sato ◽  
Hisao Kato

SummaryThrombotic complications are frequently associated with atherosclerosis. Lysophosphatidylcholine (LPC), a component accumulated in oxidatively modified LDL (ox-LDL), is known to play a crucial role in the initiation and progression of atherosclerotic vascular lesions. Since a vascular anticoagulant, tissue factor pathway inhibitor (TFPI), has the function of regulating the initial reaction of tissue factor (TF)-induced coagulation, we investigated the effect of LPC on TFPI synthesis in cultured human umbilical vein endothelial cells (HUVEC). The treatment of HUVEC with LPC for 24 h decreased TFPI antigen levels in both the culture medium and the cell lysate in a dose-dependent manner. Northern blot analysis revealed that LPC caused a time-dependent decrease in the TFPI mRNA levels. The levels of TFPI antigen and mRNA were decreased to 72% and 38%, respectively, by the incubation with 50 μM LPC for 24 h. The down-regulation by LPC of TFPI mRNA expression was not observed in the presence of cycloheximide, suggesting that protein synthesis was involved in the suppression of TFPI mRNA expression. The TFPI mRNA levels in actinomycin D-treated cells were relatively stable, indicating that the down-regulation of TFPI mRNA by LPC would be partly explained by the enhanced mRNA destabilization. In contrast to the significant down-regulatory effects of LPC on TFPI expression, LPC did not induce TF mRNA expression in HUVEC. These results indicate that LPC accumulated in the atherosclerotic vascular wall would suppress endothelial TFPI synthesis, reducing the antithrombotic property of endothelial cells.


2014 ◽  
Vol 884-885 ◽  
pp. 446-449
Author(s):  
Fu Jiang Chu ◽  
Hong Yan Ma ◽  
Xiao Bao Jin ◽  
Jia Yong Zhu

House fly maggot, Musca domestica (Linnaeus) (Diptera: Muscidae) is one of the traditional Chinese medicine (TCM). In our earlier studies, the anti-inflammatory and anti-atherosclerotic functions of the housefly maggot have been found and also the anti-inflammatory effective parts have been acquired. In this study, the effect of housefly maggot anti-inflammatory parts on proliferation and migration of TNF-α-stimulated human umbilical vein endothelial cells (HUVEC) were investigated. And the results showed that the proliferation index and the migration rates of HUVEC which stimulated by TNF-α were decreased significantly in housefly maggot anti-inflammatory parts treatment group. And also the secretion of vascular endothelial growth factor (VEGF) was decreased too compared with only TNF-α treatment group. Based on the above, the housefly maggot anti-inflammatory parts could regulate the endothelial cell dysfunction through decreasing cell proliferation and migration and a reduction in VEGF expression might plays a key role in this process.


1991 ◽  
Vol 276 (3) ◽  
pp. 739-743 ◽  
Author(s):  
K Hirokawa ◽  
N Aoki

Previous reports demonstrated that the expression of thrombomodulin (TM) in endothelial cells was modulated by various agents. Although TM was down-regulated by endotoxin or cytokines, up-regulation of TM was accomplished when endothelial cells were stimulated with unphysiologically high concentrations of cyclic AMP derivatives or tumour-promoting phorbol esters. We investigated the expression of TM in human umbilical-vein endothelial cells (HUVECs) by physiological substances that can be released into the bloodstream. Histamine (0.1-10 microM, 1-48 h) increased TM activity, TM antigen in cell lysates and TM mRNA levels, but 5-hydroxytryptamine and bradykinin had no effect. Enhancement of TM activity by histamine was completely blocked by the H1-selective antagonist pyrilamine, whereas the H2-antagonist cimetidine had no effect, showing that histamine up-regulates TM activity via H1-receptors on HUVECs. Enhanced TM activity by histamine and the resultant increase in protein C activation might play a role in a feedback regulation for prevention of vascular thrombosis.


1995 ◽  
Vol 73 (05) ◽  
pp. 812-818 ◽  
Author(s):  
Taro Ohji ◽  
Hajime Urano ◽  
Akira Shirahata ◽  
Minoru Yamagishi ◽  
Ken Higashi ◽  
...  

SummaryTo investigate the effects of transforming growth factor-betas (TGF-βs) on endothelial anticoagulant activity, we assayed thrombomodulin (TM) activity and antigen levels of human umbilical vein endothelial cells (HUVECs) incubated with TGF-βs in vitro. TGF-β1 suppressed surface TM activity and surface TM antigen levels maximally 12 h after incubation in dose-dependent manners. TGF-β2 was almost equipotent with TGF-β1 for the suppression of them. Both TGF-βs suppressed total TM antigen level in HUVECs, and the time course of the suppression was similar to that of the cell surface TM antigen level. The maximal reductions of TM mRNA levels by TGF-βs were observed at several hours ahead of those observed in both surface and total TM antigen levels, suggesting that the TGF-β-mediated suppression of TM antigen of HUVECs is primarily regulated at the TM mRNA level. Our present work suggests that the down-modulation of TM level induced by TGF-βs in HUVECs contributes in vivo to promoting the thrombogenesis either at the sites of injury of vessel walls, such as atherosclerotic lesions where TGF-β1 is released from platelets, smooth muscle cells and monocytes, or at neovascular walls in tumors secreting TGF-β2.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoxia Xue ◽  
Jin Huang ◽  
Kai Yu ◽  
Xinyue Chen ◽  
Yini He ◽  
...  

Abstract Background Angiogenesis is important for the progression of gastric cancer (GC). Y-box binding protein 1 (YB-1) predicts advanced disease and indicates neovasculature formation in GC tissues, while the related mechanisms remain elusive. Exosomes mediate intercellular communications via transferring various molecules including proteins, lipids, mRNAs, and microRNAs, while the cargos of GC exosomes and the related mechanisms in GC angiogenesis were rarely reported except for several microRNAs. Methods In this study, human umbilical vein endothelial cells (HUVECs) were, respectively, treated by the exosomes isolated from the YB-1 transfected and the control SGC-7901 cells (SGC-7901-OE-Exo and SGC-7901-NC-Exo), and their apoptosis, proliferation, migration, invasion, and angiogenesis were, sequentially, compared. The levels of angiogenic factors including VEGF, Ang-1, MMP-9 and IL-8 in the exosome-treated HUVECs and the GC-derived exosomes were, separately, detected using PCR and Western blotting as well as RNA sequencing assays. Results We observed the consistent level of YB-1 in the exosomes and their originated GC cells, and the internalization of exosomes into HUVECs. Comparing with SGC-7901-NC-Exo, SGC-7901-OE-Exo significantly inhibited the apoptosis but promoted the proliferation, migration, invasion, and angiogenesis of HUVECs, within which the increased mRNA and protein levels of VEGF, Ang-1, MMP-9 and IL-8 were demonstrated. Meanwhile, mRNA levels of VEGF, Ang-1, MMP-9 and IL-8 showed no significant difference between SGC-7901-NC-Exo and SGC-7901-OE-Exo, although statistically higher mRNA of YB-1 was detected in the SGC-7901-OE-Exo. Conclusions Our findings illustrate YB-1 as the key component of exosome to promote GC angiogenesis by upregulating specific angiogenic factors in the exosome-treated endothelial cells but not in the exosomes themselves.


Sign in / Sign up

Export Citation Format

Share Document