scholarly journals Physiological and Proteomic Responses to Drought in Leaves of Amygdalus mira (Koehne) Yü et Lu

2021 ◽  
Vol 12 ◽  
Author(s):  
Liping Xu ◽  
Yanbo Hu ◽  
Guangze Jin ◽  
Pei Lei ◽  
Liqun Sang ◽  
...  

Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.

2019 ◽  
Author(s):  
Liping Xu ◽  
Guangze Jin ◽  
Fachun Guan ◽  
Qiuxiang Luo ◽  
Fan Juan Meng

Abstract Background:Plant development is strongly influenced by various stresses, such as drought and salinity. Drought is a serious threat which can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants adapted to drought stress has been studied extensively, the adaptive strategies of Amygdalus Mira (Koehne) Yü et Lu grown in drought and re-watered habitats remain undefined. In this paper, A. Mira from the Tibetan Plateau have outstanding environmental, economic, nutritional and medicinal values, and can thrive in extreme drought. Results:This paper investigated physiological and proteomic responses in leaves of A. Mira during the period of drought stress and recovery, to understand their strategies mechanism. The changes of plant growth, photosynthesis, enzymes and non-enzymatic antioxidant during drought and re-watering were analyzed in leaves. Compared with controls, A. Mira showed stronger adaptive and resistant characteristics to drought stress. Proteomic technique was also be used to study mechanisms of drought tolerance in A. Mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: Cytoskeleton dynamics, Energy metabolism, Carbohydrate metabolism, Photosynthesis, Transcription and translation, Transport, Stress and defense, Molecular chaperones, Other materials metabolism, and Unknown function were identified. These results showed that increase of stress-defense-related proteins in leaves after drought treatment were contributed to cope with drought stress. Importantly, A. Mira developed adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancement of antioxidant enzymes activities and non-enzymatic low molecular, reduction of energy, and efficiency of adjusting gas exchanges. Conclusions:These results may help improve understanding concerning the adaptation of A. Mira to drought.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 520
Author(s):  
Wenfeng Nie ◽  
Jinyu Wang

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsis thaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


2021 ◽  
Vol 11 (9) ◽  
pp. 4160
Author(s):  
Farheen Nazli ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Bushra ◽  
...  

Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.


2021 ◽  
Vol 5 (4) ◽  
pp. 846-853
Author(s):  
Fikret YAŞAR ◽  
Özlem ÜZAL

The purpose of the study was to determine the relationship between the messenger molecule Nitric oxide (NO) and antioxidative enzyme (SOD: Superoxide Dismutase; CAT: Catalase; APX: Ascorbate Peroxidase) activities in some metabolic changes that occur under the effect of drought stress in plants, to determine the possible roles of Nitric Oxide and to obtain complementary information. The experiment conducted in a controlled environment, and plant were cultured in containers containing Hoagland nutrient solution. For drought stress application, 10% Polyethylene Glycol (PEG 6000) was added to the nutrient solution, which is equivalent to -0.40 MPa osmotic potential. Before the drought stress is applied, pepper seedlings of Demre cv were pre-treated with different doses of Sodium Nitroprusside (SNP) and Carboxy-PTIO (potassium salt) (cPTIO) (SNP 0.01, SNP 1, SNP 100 and SNP 0.01 + cPTIO, SNP + cPTIO, SNP 100+ cPTIO). On the 10th day of the drought application, the growth parameters of the plants; the plant fresh weights and their Antioxidative Enzyme Activities (SOD, CAT, APX) were determined. In terms of plant growth parameters, both plant growth and antioxidant anzyme activities of plants pretreated with 0.01 and 1 doses of SNP were lower than the high dose of SNP and the PEG application without pretreatment. The reason for the low enzyme activities in these applications can be attributed to factors such as the excess accumulation of organic acids such as proline in the cells of the plants and the decrease in H2O2 and O-2 levels in the presence of SNP.


Nabatia ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Palupi N.P

Abiotic stress conditions with high salinity cause a decrease in plant growth and production in citrus plants. The application of mycorrhizal fungi with various species is expected to be able to overcome this problem to improve plant root conditions. The results showed that the application of mycorrhizal fungi was able to improve roots so as to increase nutrient absorption, be able to maintain plant conditions under salinity stress gradually, and be able to increase the capacity of higher seedlings to control ROS formation and to activate enzymatic and non-enzymatic antioxidant defenses.


2017 ◽  
Vol 68 (11) ◽  
pp. 2991-3005 ◽  
Author(s):  
Mingzhu Yin ◽  
Yanping Wang ◽  
Lihua Zhang ◽  
Jinzhu Li ◽  
Wenli Quan ◽  
...  

Abstract Environmental stress poses a global threat to plant growth and reproduction, especially drought stress. Zinc finger proteins comprise a family of transcription factors that play essential roles in response to various abiotic stresses. Here, we found that ZAT18 (At3g53600), a nuclear C2H2 zinc finger protein, was transcriptionally induced by dehydration stress. Overexpression (OE) of ZAT18 in Arabidopsis improved drought tolerance while mutation of ZAT18 resulted in decreased plant tolerance to drought stress. ZAT18 was preferentially expressed in stems, siliques, and vegetative rosette leaves. Subcellular location results revealed that ZAT18 protein was predominantly localized in the nucleus. ZAT18 OE plants exhibited less leaf water loss, lower content of reactive oxygen species (ROS), higher leaf water content, and higher antioxidant enzyme activities after drought treatment when compared with the wild type (WT). RNA sequencing analysis showed that 423 and 561 genes were transcriptionally modulated by the ZAT18 transgene before and after drought treatment, respectively. Pathway enrichment analysis indicated that hormone metabolism, stress, and signaling were over-represented in ZAT18 OE lines. Several stress-responsive genes including COR47, ERD7, LEA6, and RAS1, and hormone signaling transduction-related genes including JAZ7 and PYL5 were identified as putative target genes of ZAT18. Taken together, ZAT18 functions as a positive regulator and plays a crucial role in the plant response to drought stress.


2018 ◽  
Vol 62 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Marta Skowron ◽  
Jolanta Zalejska-Fiolka ◽  
Urszula Błaszczyk ◽  
Ewa Chwalińska ◽  
Aleksander Owczarek ◽  
...  

AbstractIntroductionThe aim of this study was to investigate whether the type and form of oil (raw/non-oxidised (N) or post-frying/oxidised (O)) consumed in high-fat diets affect the oxidative status of an organism, as observed by malondialdehyde (MDA) concentration as an oxidative factor and antioxidant enzyme activity.Material and MethodsFats in the diet came from rapeseed oil (R) and olive oil (O).ResultsThe applied diet caused a decrease in MDA concentration (μmol/L) in serum in group RN from 2.94 ± 0.87 to 1.76 ± 0.13, in group ON from 2.45 ± 0.62 to 1.50 ± 0.10, and in group OO from 2.70 ± 1.16 to 1.84 ± 0.36. Meanwhile, MDA concentration (mmol/L) increased in blood haemolysate in group RO from 0.15 ± 0.07 to 0.22 ± 0.03 and in group OO from 0.17 ± 0.02 to 0.22 ± 0.02. The observed changes caused a response of the enzymatic antioxidant system in both models, especially followed by an increase in activities of total superoxide dismutase and its mitochondrial isoenzyme in all experimental groups, while its cytosolic isoenzyme activity increased only in ON and OO groups. Increased activity of glutathione peroxidase (GPX) in groups RN and RO and of catalase (CAT) in groups ON and OO was observed. Significant differences in responses to the different types and forms of oils were probably caused by the different oxidative stability of the studied oils.ConclusionThis diet disturbed the body’s oxidative status; however, during the six-month study the enzymatic antioxidant system remained effective.


2020 ◽  
Vol 40 (12) ◽  
pp. 1726-1743
Author(s):  
Agnieszka Szuba ◽  
Łukasz Marczak ◽  
Izabela Ratajczak

Abstract It is believed that resource exchange, which is responsible for intensified growth of ectomycorrhizal plants, occurs in the fungus–plant interface. However, increasing evidence indicates that such intensified plant growth, especially root growth promotion, may be independent of root colonization. Nevertheless, the molecular adjustments in low-colonized plants remain poorly understood. Here, we analysed the metabolome of Populus × canescens microcuttings characterized by significantly increased growth triggered by inoculation with Paxillus involutus, which successfully colonized only 2.1 ± 0.3% of root tips. High-throughput metabolomic analyses of leaves, stems and roots of Populus × canescens microcuttings supplemented with leaf proteome data were performed to determine ectomycorrhiza-triggered changes in N-, P- and C-compounds. The molecular adjustments were relatively low in low-colonized (M) plants. Nevertheless, the levels of foliar phenolic compounds were significantly increased in M plants. Increases of total soluble carbohydrates, starch as well as P concentrations were also observed in M leaves along with the increased abundance of the majority of glycerophosphocholines detected in M roots. However, compared with the leaves of the non-inoculated controls, M leaves presented lower concentrations of both N and most photosynthesis-related proteins and all individual mono- and disaccharides. In M stems, only a few compounds with different abundances were detected, including a decrease in carbohydrates, which was also detected in M roots. Thus, these results suggest that the growth improvement of low-colonized poplar trees is independent of an increased photosynthesis rate, massively increased resource (C:N) exchange and delivery of most nutrients to leaves. The mechanism responsible for poplar growth promotion remains unknown but may be related to increased P uptake, subtle leaf pigment changes, the abundance of certain photosynthetic proteins, slight increases in stem and root amino acid levels and the increase in flavonoids (increasing the antioxidant capacity in poplar), all of which improve the fitness of low-colonized poplars.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Mazhar Abbas ◽  
Faisal Imran ◽  
Rashid Iqbal Khan ◽  
Muhammad Zafar-ul-Hye ◽  
Tariq Rafique ◽  
...  

Bitter gourd is one of the important cucurbits and highly liked among both farmers and consumers due to its high net return and nutritional value. However, being monoecious, it exhibits substantial variation in flower bearing pattern. Plant growth regulators (PGRs) are known to influence crop phenology while gibberellic acid (GA3) is one of the most prominent PGRs that influence cucurbits phenology. Therefore, a field trial was conducted at University of Agriculture Faisalabad to evaluate the impact of a commercial product of gibberellic acid (GA3) on growth, yield and quality attributes of two bitter gourd (Momordica charantiaL.) cultivars. We used five different concentrations (0.4 g, 0.6 g, 0.8 g, 1.0 g, and 1.2 g per litre) of commercial GA3 product (Gibberex, 10% Gibberellic acid). Results showed that a higher concentration of gibberex (1.0 and 1.20 g L−1 water) enhanced the petiole length, intermodal length, and yield of bitter gourd cultivars over control in Golu hybrid and Faisalabad Long. A significant decrease in the enzyme superoxidase dismutase, peroxidase, and catalase activities were observed with an increasing concentration of gibberex (1.0 and 1.20 gL−1 water) as compared to control. These results indicate that the exogenous application of gibberex at a higher concentration (1.2 g L−1) has a dual action in bitter gourd plant: i) it enhances the plant growth and yield, and ii) it also influenced the antioxidant enzyme activities in fruits. These findings may have a meaningful, practical use for farmers involved in agriculture and horticulture.


Sign in / Sign up

Export Citation Format

Share Document