scholarly journals Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of Malus x domestica Borkh. ‘Gala’

2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Penzel ◽  
Werner B. Herppich ◽  
Cornelia Weltzien ◽  
Nikos Tsoulias ◽  
Manuela Zude-Sasse

The capacity of apple trees to produce fruit of a desired diameter, i.e., fruit-bearing capacity (FBC), was investigated by considering the inter-tree variability of leaf area (LA). The LA of 996 trees in a commercial apple orchard was measured by using a terrestrial two-dimensional (2D) light detection and ranging (LiDAR) laser scanner for two consecutive years. The FBC of the trees was simulated in a carbon balance model by utilizing the LiDAR-scanned total LA of the trees, seasonal records of fruit and leaf gas exchanges, fruit growth rates, and weather data. The FBC was compared to the actual fruit size measured in a sorting line on each individual tree. The variance of FBC was similar in both years, whereas each individual tree showed different FBC in both seasons as indicated in the spatially resolved data of FBC. Considering a target mean fruit diameter of 65 mm, FBC ranged from 84 to 168 fruit per tree in 2018 and from 55 to 179 fruit per tree in 2019 depending on the total LA of the trees. The simulated FBC to produce the mean harvest fruit diameter of 65 mm and the actual number of the harvested fruit >65 mm per tree were in good agreement. Fruit quality, indicated by fruit's size and soluble solids content (SSC), showed enhanced percentages of the desired fruit quality according to the seasonally total absorbed photosynthetic energy (TAPE) of the tree per fruit. To achieve a target fruit diameter and reduce the variance in SSC at harvest, the FBC should be considered in crop load management practices. However, achieving this purpose requires annual spatial monitoring of the individual FBC of trees.

2005 ◽  
pp. 230-235
Author(s):  
József Racskó ◽  
Gábor Drén ◽  
Sándor Thurzó

The aim of our two year study is to research the effect of nutrient supply on apple fruit quality, and to explore the relationships between selected fruit quality parameters.Observations were made in Kálmánháza (in the eastern part of Hungary), on a commercial apple orchard. In this experiment, we studied the nutrient supply reaction of four apple cultivars (Golden Delicious, Granny Smith, Idared and Jonathan Csány) under different N and NPK doses. The following fruit quality parameters were studied: fruit diameter, fruit height, fruit weight, flesh firmness, colour-coverage and we studied the density of foliage.The research results showed that N fertilization has a great effect on fruit quality. This is shown in the cases of increase of fruit size (fruit diameter, fruit height, fruit weight). The increase is proportional with the N doses, accordingly the highest positive difference was observed by using 100 kg/ha N doses. It is important to note that moderate N doses (75 kg/ha) plus P and K additions also had positive effects. There approached the values of 100 kg/ha N, and even exceeded its values in the cultivar Golden Reinders. The increased N doses enlarged the standard deviation, on the other hand, this parameter was low in the cases of balanced NPK fertilization. The nutrient supply increased the vegetative area (density of foliage) in addition to the generative parts, in particular only N fertilizer. However the denser foliage hindered the growth of fruit weight and colour-coverage, and also decreased the fruit quality and the flesh firmness of cultivars, which have a negative effect on storageability.A linear correlation was demonstrated between the fruit weight and colour-coverage, or between fruit weight and flesh firmness. The character of their relationship was similar, but the direction differed: high fruit weight was with high colour-coverage, but with low flesh firmness.


2017 ◽  
Vol 45 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Ersin ATAY ◽  
Seckin GARGIN ◽  
Ahmet ESITKEN ◽  
N. Pinar GUZEL ◽  
A. Nilgun ATAY ◽  
...  

Orchard performance is influenced by weed competition. In this study, the effects of weed competition on nutrient contents, chemical and physical fruit quality properties were sought. The study was carried out in a high-density apple orchard (‘Golden Delicious’/M.9) over two consecutive growing seasons. The effect of weed competition was studied at three different levels: weak, moderate and strong. Fruit firmness, soluble solids content, macronutrients (such as nitrogen, potassium and calcium) and potassium+magnesium/calcium ratio in fruit were significantly affected by weed competition. Strong weed competition negatively affected soluble solids content and potassium+magnesium/calcium ratio. In both trial years, soluble solids content was significantly higher in weak weed competition. In the first year of the study, soluble solids content ranged between 13.77±0.06% (strong weed competition) and 15.20±0.10% (weak weed competition). In the following year, soluble solids content values were determined as 13.13±0.23% in strong weed competition and 13.83±0.21% in weak weed competition. Weak weed competition showed superiority for fruit weight and potassium+magnesium/calcium ratio. As a whole, this study indicates that insufficient weed control in tree rows might be a limiting factor for fruit quality in high-density apple orchards.


2018 ◽  
Vol 63 (4) ◽  
pp. 355-366
Author(s):  
Saadatian Mohammad ◽  
Paiza Abdurahman ◽  
Kanar Salim ◽  
Pershang Younis ◽  
Hewen Abdurahman ◽  
...  

Some physico-chemical properties of ten pomegranate accessions collected from different districts in the Kurdistan region of Iraq were investigated in this paper. Considerable correlations between the characteristics studied were found and valuable pomological traits were observed. Cluster analysis showed the homonyms between some pomegranate accessions. Principle component analysis reported that the component describing the greatest variability also positively correlated with fruit weight, total aril weight, total peel weight, volume of juice, total soluble solids (TSS), fruit length, fruit diameter, pH, aril length, and 100-seed fresh weight, but negatively correlated with titratable acidity (TA). Fruit weight was firmly correlated with total aril weight, total peel weight, volume of juice, TSS, aril length, 100-seed fresh weight, fruit length and fruit diameter. The volume of juice was correlated with TSS, aril length, 100-seed fresh weight, fruit length, fruit diameter and it was observed that with an increase in the fruit size, the volume of juice increased as well. The correlation between total phenolic compounds and antioxidant capacity was not observed. The associations found among physical and chemical traits suggest that consumers should use large fruits with large arils so that they have more juice. Thus, ?Choman?, ?Raniyeh? and ?Halabja? were juicier than other accessions.


HortScience ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Gregory M. Peck ◽  
Preston K. Andrews ◽  
John P. Reganold ◽  
John K. Fellman

Located on a 20-ha commercial apple (Malus domestica Borkh.) orchard in the Yakima Valley, Washington, a 1.7-ha study area was planted with apple trees in 1994 in a randomized complete block design with four replications of three treatments: organic (ORG), conventional (CON), and integrated (INT). Soil classification, rootstock, cultivar, plant age, and all other conditions except management were the same on all plots. In years 9 (2002) and 10 (2003) of this study, we compared the orchard productivity and fruit quality of `Galaxy Gala' apples. Measurements of crop yield, yield efficiency, crop load, average fruit weight, tree growth, color grades, and weight distributions of marketable fruit, percentages of unmarketable fruit, classifications of unmarketable fruit, as well as leaf, fruit, and soil mineral concentrations, were used to evaluate orchard productivity. Apple fruit quality was assessed at harvest and after refrigerated (0 to 1 °C) storage for three months in regular atmosphere (ambient oxygen levels) and for three and six months in controlled atmosphere (1.5% to 2% oxygen). Fruit internal ethylene concentrations and evolution, fruit respiration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA), purgeable volatile production, sensory panels, and total antioxidant activity (TAA) were used to evaluate fruit quality. ORG crop yields were two-thirds of the CON and about half of the INT yields in 2002, but about one-third greater than either system in 2003. High ORG yields in 2003 resulted in smaller ORG fruit. Inconsistent ORG yields were probably the result of several factors, including unsatisfactory crop load management, higher pest and weed pressures, lower leaf and fruit tissue nitrogen, and deficient leaf tissue zinc concentrations. Despite production difficulties, ORG apples had 6 to 10 N higher flesh firmness than CON, and 4 to 7 N higher than INT apples, for similar-sized fruit. Consumer panels tended to rate ORG and INT apples to have equal or better overall acceptability, firmness, and texture than CON apples. Neither laboratory measurements nor sensory evaluations detected differences in SSC, TA, or the SSC to TA ratio. Consumers were unable to discern the higher concentrations of flavor volatiles found in CON apples. For a 200 g fruit, ORG apples contained 10% to 15% more TAA than CON apples and 8% to 25% more TAA than INT apples. Across most parameters measured in this study, the CON and INT farm management systems were more similar to each other than either was to the ORG system. The production challenges associated with low-input organic apple farming systems are discussed. Despite limited technologies and products for organic apple production, the ORG apples in our study showed improvements in some fruit quality attributes that could aid their marketability.


2018 ◽  
Vol 40 (3) ◽  
Author(s):  
Nicole Trevisani ◽  
Rita Carolina de Melo ◽  
João Pedro Fossa Bernardy ◽  
Patrícia Maria Oliveira Pierre ◽  
Jefferson Luís Meirelles Coimbra ◽  
...  

Abstract The restricted genetic base in physalis in Southern Brazil is a challenge that requires genetic breeding for the achievement of fruits with superior agronomic quality. Therefore, genetic changes were induced in physalis for the selection of populations with superior fruit quality. To that end, seven populations of physalis were submitted to gamma irradiation (0,100 and 200 Grays – Gy), which provided 21 populations. Significant population difference was observed, which indicates the existence of variability between at least two populations of physalis. The contrasts showed difference for Colômbia01, Colômbia02, Caçador and CAV. The mutation induction was effective at causing genetic variations in these populations. For Colombia01 (100 Gy), it was observed reduction of 3.97 mm and 2.56 mm (200 Gy) in the transverse fruit diameter (DTF). In the Colombia02 population (200 Gy), there was an increase of 2.99 mm in the longitudinal fruit diameter (DLT) and 4.90 mm in the DTF. For CAV (200 Gy), it was found the increase of 1.81 ºBrix. Mutation induction was beneficial in these cases, but fruit quality is still below the potential of the crop, when compared to fruits from Andean countries. It is possible to suggest that quantitative traits, such as fruit mass (MF) and total soluble solids (SST), and the degree of ploidy in physalis (2n = 4x = 48) reduce the mutagenic agent ability to cause variations.


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Gerry H. Neilsen ◽  
Denise Neilsen ◽  
Frank Kappel ◽  
T. Forge

‘Cristalina’ and ‘Skeena’ sweet cherry cultivars (Prunus avium L.) on Gisela 6 (Prunus cerasus × Prunus canescens) rootstock planted in 2005 were maintained since 2006 in a randomly blocked split-split plot experimental design with six blocks of two irrigation frequency main plot treatments within which two cultivar subplots and three soil management sub-subplots were randomly applied. The focus of this study was the growth, yield, and fruit quality response of sweet cherry to water and soil management over three successive fruiting seasons, 2009–11, in a cold climate production area. The final 2 years of the study period were characterized by cool, wet springs resulting in low yield and yield efficiency across all treatments. Soil moisture content (0- to 20-cm depth) during the growing season was often higher in soils that received high-frequency irrigation (HFI) compared with low-frequency irrigation (LFI). HFI and LFI received the same amount of water, but water was applied four times daily in the HFI treatment but every other day in the LFI treatment. Consequently, larger trunk cross-sectional area (TCSA) and higher yield were found on HFI compared with LFI trees. Soil management strategies involving annual bloom time phosphorus (P) fertigation and wood waste mulching did not affect tree vigor and yield. Increased soluble solids concentration (SSC) occurred with LFI. Decreased SSC occurred with delayed harvest maturity in trees receiving P fertigation at bloom. The largest fruit size was correlated for both cultivars with low crop loads ranging from 100 to 200 g fruit/cm2 TCSA. Overall cool, wet spring weather strongly affected annual yield and fruit quality, often overriding cultivar and soil and water management effects.


Horticulturae ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 18 ◽  
Author(s):  
Andrew Aipperspach ◽  
James Hammond ◽  
Harlene Hatterman-Valenti

Experiments were conducted to evaluate the effects of three pruning levels (20, 30 and 40 nodes per vine) and three fruit-zone leaf removal levels (0%, 50%, and 100%) on the yield and fruit quality of Frontenac gris and Marquette wine grapes in a northern production region. The study was conducted at three North Dakota vineyards located near Buffalo, Clifford, and Wahpeton, North Dakota, in 2011 and 2012. Increasing the number of buds retained increased yields and reduced pruning weights in both cultivars. Frontenac gris and Marquette yields were greatest when vines had 50% of the fruit-zone leaves removed due to heavier clusters, suggesting that the 100% fruit-zone leaf removal level was too severe. Individual berries in clusters were also heavier when vines were pruned to retain 40 buds. Frontenac gris fruit quality was similar both years and was not influenced by pruning or leaf removal levels. Marquette fruit total soluble solids content was greater in 2012 due to the warmer and longer growing season. Marquette fruit titratable acidity was lower when 100% of the fruit-zone leaves were removed. These results suggest that for the two cold-hardy hybrid wine grapes used in this study, greater bud retention levels should be investigated. Results also warrant further research into cultivar adaptiveness to northern Great Plains conditions. With further research, it is anticipated that wine grape cultivars and management practices will be identified to produce acceptable yields and fruit quality for commercial wine grape production.


HortScience ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 236-244 ◽  
Author(s):  
Sara Serra ◽  
Rachel Leisso ◽  
Luca Giordani ◽  
Lee Kalcsits ◽  
Stefano Musacchi

The apple variety, ‘Honeycrisp’ has been extensively planted in North America during the last two decades. However, it suffers from several agronomic problems that limit productivity and postharvest quality. To reduce losses, new information is needed to better describe the impact of crop load on productivity and postharvest fruit quality in a desert environment and the major region where ‘Honeycrisp’ expansion is occurring. Here, 7-year-old ‘Honeycrisp’ trees on the M9-Nic29 rootstock (2.5 × 0.9 m) were hand thinned to five different crop loads [from 4.7 to 16.0 fruit/cm2 of trunk cross-sectional area (TCSA)] to compare fruit quality, maturity, fruit size, elemental concentration, and return bloom. Fruit size distribution was affected by crop load. Trees with the highest crop load (16 fruit/cm2) produced smaller fruit. Index of absorbance difference (IAD) measurements (absorption difference between 670 and 720 nm), a proxy indicator of the chlorophyll content below the skin of fruit measured by a DA-meter, were made shortly after harvest (T0) and after 6 months of storage (T1). Fruit from the trees with the lowest crop load had lower IAD values indicating advanced fruit ripeness. The comparison between the IAD classes at T0 and T1 showed that fruit belonging to the lowest IAD class had significantly higher red-blushed overcolor percentage, firmness, dry matter, and soluble solid content than those in the “most unripe” class (highest IAD readings) regardless of crop load. The percentage of blushed color, firmness, titratable acidity (TA), soluble solids content, and dry matter were all higher in the lowest crop loads at both T0 and T1. Fruit calcium (Ca) concentration was lowest at the lowest crop load. The (K + Mg + N):Ca ratio decreased as crop load increased until a crop load of 11.3 fruit/cm2, which was not significantly different from higher crop loads. For return bloom, the highest number of flower clusters per tree was reported for 4.7 fruit/cm2 crop load, and generally it decreased as crop load increased. Here, we highlight the corresponding changes in fruit quality, storability, and elemental balance with tree crop load. To maintain high fruit quality and consistency in yield, careful crop load management is required to minimize bienniality and improve fruit quality and storability.


2008 ◽  
Vol 18 (3) ◽  
pp. 460-466 ◽  
Author(s):  
Johann S. Buck ◽  
Chieri Kubota ◽  
Merle Jensen

Cherry tomato (Solanum lycopersicum var. cerasiforme) plants were grown hydroponically with three different regimes of electrical conductivity (EC) of the nutrient solution to develop an effective EC management method to enhance the fruit quality. The EC treatments examined were 1) continuous high EC [4.7 dS·m−1 (HE)], 2) continuous low EC [2.8 dS·m−1 (LE)], and 3) high EC combined with midday (1030–1530 hr) low EC [midday reduction of high EC (MDR)]. The research was conducted to obtain preliminary information on the effect of EC treatments on the yield and fruit quality for 15 weeks of harvest under semiarid greenhouse conditions. Harvested fruit were sorted to several quality grades, including the “premium” grade based on fruit size, color, and total soluble solids. The number of fruit per truss was significantly higher in cultivar L308 than in cultivar L907 and in the LE treatment than in the HE or MDR treatment. The fruit size decreased over time regardless of EC treatment and cultivar. Cumulative yield of 15 weeks was greater in the LE treatment (26.3 kg·m−2) than in the HE treatment (22.1 kg·m−2) for ‘L907’, and there were no significant differences between the three EC treatments for ‘L308’ (24.1–28.1 kg·m−2). The cumulative yield in the MDR treatment was similar to that in the LE treatment regardless of cultivar. When quality attributes such as total soluble solids concentration measured for randomly sampled fruit were considered, cumulative premium-grade yield was the greatest for the HE treatment (12.9 or 17.6 kg·m−2) and was the smallest for the LE treatment (1.4 or 12.1 kg·m−2), regardless of cultivar. The cumulative yield of premium-grade cherry tomatoes in the MDR treatment was not significantly different from that in the HE treatment for ‘L308’ but was 11% less than that in the HE treatment for ‘L907’. Therefore, together with cultivar selection, the MDR treatment may be a potential alternative to a more commonly practiced continuously high EC treatment in semiarid greenhouses with limited environmental control capacity in which increasing the nutrient EC to increase quality is desired without significantly decreasing yield.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 748E-748 ◽  
Author(s):  
Timothy E. Elkner* ◽  
David H. Johnson

Medium-sized triploid watermelons were evaluated in southeast Pennsylvania in 2002 and 2003 to determine the best adapted cultivars for this region. The 2002 season was unusually hot and dry, while 2003 was unusually cool and wet. Yields and fruit quality were compared for the eight cultivars that were grown both seasons to determine the effect of weather on seedless watermelon. Cooler temperatures reduced total fruit number and total yield but not average fruit weight or soluble solids. Researchers evaluating triploid watermelons over several seasons can compare size and °Brix among cultivars, but will need to be cautious when predicting total yields.


Sign in / Sign up

Export Citation Format

Share Document