scholarly journals Differential Variation in Non-structural Carbohydrates in Root Branch Orders of Fraxinus mandshurica Rupr. Seedlings Across Different Drought Intensities and Soil Substrates

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Ji ◽  
Yue Liu ◽  
Jun Wang ◽  
Zhimin Lu ◽  
Lijie Zhang ◽  
...  

Non-structural carbohydrates (NSCs) facilitate plant adaptation to drought stress, characterize tree growth and survival ability, and buffer against external disturbances. Previous studies have focused on the distribution and dynamics of NSCs among different plant organs under drought conditions. However, discussion about the NSC levels of fine roots in different root branch orders is limited, especially the relationship between fine root trait variation and NSC content. The objective of the study was to shed light on the synergistic variation in fine root traits and NSC content in different root branch orders under different drought and soil substrate conditions. The 2-year-old Fraxinus mandshurica Rupr. potted seedlings were planted in three different soil substrates (humus, loam, and sandy–loam soil) and subjected to four drought intensities (CK, mild drought, moderate drought, and severe drought) for 2 months. With increasing drought intensity, the biomass of fine roots decreased significantly. Under the same drought intensity, seedlings in sandy–loam soil had higher root biomass, and the coefficient of variation of 5th-order roots (37.4, 44.5, and 53% in humus, loam, and sandy–loam soil, respectively) was higher than that of lower-order roots. All branch order roots of seedlings in humus soil had the largest specific root length (SRL) and specific root surface area (SRA), in addition to the lowest diameter. With increasing drought intensity, the SRL and average diameter (AD) of all root branch orders increased and decreased, respectively. The fine roots in humus soil had a higher soluble sugar (SS) content and lower starch (ST) content compared to the loam and sandy–loam soil. Additionally, the SS and ST contents of fine roots showed decreasing and increasing tendencies with increasing drought intensities, respectively. SS and ST explained the highest degree of the total variation in fine root traits, which were 32 and 32.1%, respectively. With increasing root order, the explanation of the variation in root traits by ST decreased (only 6.8% for 5th-order roots). The observed response in terms of morphological traits of different fine root branch orders of F. mandshurica seedlings to resource fluctuations ensures the maintenance of a low cost-benefit ratio in the root system development.

2021 ◽  
Author(s):  
Li Ji ◽  
Yue Liu ◽  
Jun Wang ◽  
Zhimin Lu ◽  
Yuchun Yang ◽  
...  

Non-structural carbohydrates (NSCs) facilitate plants adapt to drought stress, could characterize trees growth and survival ability and buffer against external disturbances. Previous studies have focused on the distribution and dynamics of NSCs among different plant organs under drought conditions. However, discussion about the NSC levels of fine roots in different root branch order were little, especially the relationship between fine root trait variation and NSCs content. The aim of the study is to shed light into the synergistic variation of fine root traits and NSC content in different root branch order under different drought and soil substrate conditions. 2-year-old Fraxinus mandshurica Rupr. potted seedlings were planted in three different soil substrates (humus, loam and sandy-loam soil) and conducted to four drought intensities (CK, mild drought, moderate drought and severe drought) for two months. With the increase of drought intensity, the biomass of fine roots decreased significantly. Under the same drought intensity, seedlings in sandy-loam soil have higher root biomass, and the coefficient of variation of fifth-order roots (37.4%, 44.5% and 53.0% in humus, loam and sandy loam, respectively) is higher than that of lower-order roots. With the increase of drought intensity, the specific root length (SRL) and average diameter (AD) of all five orders increased and decreased, respectively. The fine roots in humus soil had higher soluble sugar content and lower starch content. Also, the soluble sugar and starch content of fine roots showed decreasing and increasing tendency respectively. Soluble sugar and starch explain the highest degree of total variation of fine root traits, that is 32.0% and 32.1% respectively. With ascending root order, the explanation of the variation of root traits by starch decreased (only 6.8% for fifth-order roots). The response of different root branch order fine root morphological traits of F. mandshurica seedlings to resource fluctuations ensures that plants maintain and constructure the root development by an economical way to obtain more resources.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 731-738 ◽  
Author(s):  
Roland Harrison ◽  
Sharon Ellis ◽  
Roy Cross ◽  
James Harrison Hodgson

2020 ◽  
Vol 18 (4) ◽  
pp. 84-87
Author(s):  
Yu.V. Leonova ◽  
◽  
T.A. Spasskaya ◽  

The change in the microbiological activity of sod-podzolic sandy loam soil when using coffee waste and sewage sludge as a fertilizer for oats in comparison with traditional fertilizers is considered. During the study, it was determined that the predominant groups were bacteria and actinomycetes. Bacilli and fungi are few in number. The introduction of sewage sludge and coffee waste into the sod-podzolic sandy loam soil at a dose of 10 t / ha increases the activity of the microflora of the sod-podzolic sandy loam soil, which increases the effective and potential fertility.


2004 ◽  
Vol 3 (1) ◽  
pp. 316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

2021 ◽  
Vol 11 (12) ◽  
pp. 5499
Author(s):  
Nihal D. Salman ◽  
György Pillinger ◽  
Muammel M. Hanon ◽  
Péter Kiss

The applicability of the typical pressure–sinkage models used to characterize the soil’s bearing properties is limited to homogeneous soils (infinite thickness) that have no hard layer. At a given depth, a hard layer can have a considerable impact on the soil’s load-bearing capacity. It is thus necessary to alter the pressure–sinkage equation by taking this condition into account when assessing the load-bearing capacity. The present paper aims to determine a simple, high-fidelity model, in terms of soil characterization, that can account for the hard layer affection. To assess hard layer affection in this paper, a plate sinkage test (bevameter) was conducted on sandy loam soil. To this end, the soil was prepared by considering three bulk densities and two soil thickness levels at 7–9% moisture content levels. According to the results, this paper put forth a new perspective and related equations for characterizing bearing performance. The sinkage modulus (k) is an intrinsic soil parameter that has a determined unit of N/cm2 and is significant for managing the bearing performance. The results showed that the new modulus sinkage model incorporates the main factor of the rigid layer effect involving high fidelity that the conventional models have failed to account for.


1978 ◽  
Vol 14 (3) ◽  
pp. 253-259 ◽  
Author(s):  
H. N. Verma ◽  
S. S. Prihar ◽  
Ranjodh Singh ◽  
Nathu Singh

SUMMARYField experiments were conducted for 4 years to study the yield of ‘kharif’ and ‘rabi’ crops grown in sequence on two soils differing in water-holding capacity. The results indicated that drought caused greater reduction in yield of rainy-season crops on loamy sand than on sandy loam soil. In low retentivity soil it was more profitable to raise a single crop of wheat on soil-stored water. In sandy loam soil of higher retentivity, two crops a year gave much higher yields than a single crop. Of the sequences tried, maize followed by wheat gave the highest and most stable yields. For ‘rabi’ crops, stored water showed a better yield response than an equivalent amount of rain during the growing season.


Sign in / Sign up

Export Citation Format

Share Document