scholarly journals Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

2021 ◽  
Vol 12 ◽  
Author(s):  
Irsa Ejaz ◽  
Siyang He ◽  
Wei Li ◽  
Naiyue Hu ◽  
Chaochen Tang ◽  
...  

Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Fourier-transform (FT) NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by FT-NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. This study aimed to provide a reference for the evaluation of sorghum grain biochemicals for food, feed, and fuel without destruction and complex chemical analysis.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 441 ◽  
Author(s):  
Manuela Mancini ◽  
Luca Mazzoni ◽  
Francesco Gagliardi ◽  
Francesca Balducci ◽  
Daniele Duca ◽  
...  

The determination of strawberry fruit quality through the traditional destructive lab techniques has some limitations related to the amplitude of the samples, the timing and the applicability along all phases of the supply chain. The aim of this study was to determine the main qualitative characteristics through traditional lab destructive techniques and Near Infrared Spectroscopy (NIR) in fruits of five strawberry genotypes. Principal Component Analysis (PCA) was applied to search for spectral differences among all the collected samples. A Partial Least Squares regression (PLS) technique was computed in order to predict the quality parameters of interest. The PLS model for the soluble solids content prediction was the best performing—in fact, it is a robust and reliable model and the validation values suggested possibilities for its use in quality applications. A suitable PLS model is also obtained for the firmness prediction—the validation values tend to worsen slightly but can still be accepted in screening applications. NIR spectroscopy represents an important alternative to destructive techniques, using the infrared region of the electromagnetic spectrum to investigate in a non-destructive way the chemical–physical properties of the samples, finding remarkable applications in the agro-food market.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012022
Author(s):  
Nebojša Todorović

Abstract Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares regression (PLS-R) were tested for the possibility of equilibrium moisture content (EMC) prediction in thermally modified beech wood (Fagus moesiaca C.). The samples were modified for 4h at temperatures of 170, 190 and 210 °C. After thermal modification, the samples were kept in a climatic chamber until EMC was reached. FT-NIR spectra (100 scans and 4 cm-1) were collected on the cross-section and radial surfaces at four points. PLS – R models were developed for four spectral regions: the first overtone, the second overtone, the third overtone and the combination band region. Applied thermal treatment caused a decrease of EMC by 42 % at 170 °C, by 53 % at 190 °C, and by 62 % at 210 °C. Principal component analysis (PCA) indicated that there is a difference both between treatments and between wood surfaces. The results of the spectra taken from the radial surface were, in all models, better than the spectra of the cross-section. Related to chemical changes, the first and second overtone region play an important role in the calibrations. The best prediction models for EMC of thermally modified beech wood were obtained from radial surface spectra in the first (Rp2=0.86, RPD=2.69) and second overtone region (Rp2=0.87, RPD=2.70). The obtain results could contribute to the development of predictive models in monitoring of EMC which could significantly improve the quality of industrial production of thermally modified wood.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chen Yang ◽  
Chen Lingli ◽  
Guo Meijin ◽  
Li Xu ◽  
Liu jinsong ◽  
...  

AbstractThe fermentation process is dynamically changing, and the metabolic status can be grasped through real-time monitoring of environmental parameters. In this study, a real-time and on-line monitoring experiment platform for substrates and products detection was developed based on non-contact type near-infrared (NIR) spectroscopy technology. The prediction models for monitoring the fermentation process of lactic acid, sophorolipids (SLs) and sodium gluconate (SG) were established based on partial least-squares regression and internal cross-validation methods. Through fermentation verification, the accuracy and precision of the NIR model for the complex fermentation environments, different rheological properties (uniform system and multi-phase inhomogeneous system) and different parameter types (substrate, product and nutrients) have good applicability, and R2 was greater than 0.98, exhibiting a good linear relationship. The root mean square error of prediction shows that the model has high credibility. Through the control of appropriate glucose concentration in SG fermentation as well as glucose and oil concentrations SLs fermentation by NIR model, the titers of SG and SLs were increased to 11.8% and 26.8%, respectively. Although high cost of NIR spectrometer is a key issue for its wide application in an industrial scale. This work provides a basis for the application of NIR spectroscopy in complex fermentation systems.


2021 ◽  
Author(s):  
Yang Chen ◽  
Lingli Chen ◽  
Meijin Guo ◽  
Xu Li ◽  
Jinsong Liu ◽  
...  

Abstract The fermentation process is dynamically changing, and the metabolic status can be grasped through real-time monitoring of environmental parameters. In this study, a real-time and on-line monitoring experiment platform for substrates and products detection was developed based on non-contact type near-infrared (NIR) spectroscopy technology. The prediction models for monitoring the fermentation process of lactic acid, sophorolipids and sodium gluconate were established based on partial least-squares regression and internal cross-validation methods. Through fermentation verification, the accuracy and precision of the NIR model for the complex fermentation environments, different rheological properties (uniform system and multi-phase inhomogeneous system) and different parameter types (substrate, product and nutrients) have good applicability, and R2 is greater than 0.90, exhibiting a good linear relationship. The root mean square error shows that the model has high credibility. This research provides a basis for the application of NIR spectroscopy in complex fermentation systems.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 95
Author(s):  
Anita Hencz ◽  
Lien Le Phuong Nguyen ◽  
László Baranyai ◽  
Donatella Albanese

Food adulteration is in the focus of research due to its negative effect on safety and nutritional value and because of the demand for the protection of brands and regional origins. Portugieser and Sauvignon Blanc wines were selected for experiments. Samples were made by water dilution, the addition of sugar and then a combination of both. Near infrared (NIR) spectra were acquired in the range of 900–1700 nm. Partial least squares regression was performed to predict the adulteration level. The model including all wines and adulterations achieved a prediction error of 0.59% added sugar and 6.85% water dilution. Low-power laser modules were used to collect diffuse reflectance signals at wavelengths of 532, 635, 780, 808, 850, 1064 nm. The general linear model resulted in a higher prediction error of 3.06% added sugar and 20.39% water dilution. Instead of classification, the present study investigated the feasibility of non-destructive methods in the prediction of adulteration level. Laser scattering successfully detected the added sugar with linear discriminant analysis (LDA), but its prediction accuracy was low. NIR spectroscopy might be suitable for rapid non-destructive estimation of wine adulteration.


2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

&lt;p&gt;Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.&lt;/p&gt;&lt;p&gt;The study is performed in Mediterranean Croatia (44&amp;#176; 05&amp;#8217; N; 15&amp;#176; 22&amp;#8217; E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed &lt;em&gt;Quercus ssp.&lt;/em&gt; and &lt;em&gt;Juniperus ssp.&lt;/em&gt; forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22&lt;sup&gt;nd&lt;/sup&gt; 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31&lt;sup&gt;st&lt;/sup&gt; and September 5&lt;sup&gt;th &lt;/sup&gt;2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE&lt;sub&gt;p&lt;/sub&gt;) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.&lt;/p&gt;&lt;p&gt;The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE&lt;sub&gt;p &lt;/sub&gt;(Spectroscopy dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 1.91; Sentinel-2 dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt; remote sensing, soil spectroscopy, wildfires, soil organic matter&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment: &lt;/strong&gt;This work was supported by the Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO). Aleksandra Per&amp;#269;in is acknowledged for her cooperation during the laboratory work.&lt;/p&gt;


2018 ◽  
Vol 10 (4) ◽  
pp. 351
Author(s):  
João S. Panero ◽  
Henrique E. B. da Silva ◽  
Pedro S. Panero ◽  
Oscar J. Smiderle ◽  
Francisco S. Panero ◽  
...  

Near Infrared (NIR) Spectroscopy technique combined with chemometrics methods were used to group and identify samples of different soy cultivars. Spectral data, collected in the range of 714 to 2500 nm (14000 to 4000 cm-1), were obtained from whole grains of four different soybean cultivars and were submitted to different types of pre-treatments. Chemometrics algorithms were applied to extract relevant information from the spectral data, to remove the anomalous samples and to group the samples. The best results were obtained considering the spectral range from 1900.6 to 2187.7 nm (5261.4 cm-1 to 4570.9 cm-1) and with spectral treatment using Multiplicative Signal Correction (MSC) + Baseline Correct (linear fit), what made it possible to the exploratory techniques Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to separate the cultivars. Thus, the results demonstrate that NIR spectroscopy allied with de chemometrics techniques can provide a rapid, nondestructive and reliable method to distinguish different cultivars of soybeans.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sylvio Barbon ◽  
Ana Paula Ayub da Costa Barbon ◽  
Rafael Gomes Mantovani ◽  
Douglas Fernandes Barbin

Identification of chicken quality parameters is often inconsistent, time-consuming, and laborious. Near-infrared (NIR) spectroscopy has been used as a powerful tool for food quality assessment. However, the near-infrared (NIR) spectra comprise a large number of redundant information. Determining wavelengths relevance and selecting subsets for classification and prediction models are mandatory for the development of multispectral systems. A combination of both attribute and wavelength selection for NIR spectral information of chicken meat samples was investigated. Decision Trees and Decision Table predictors exploit these optimal wavelengths for classification tasks according to different quality grades of poultry meat. The proposed methodology was conducted with a support vector machine algorithm (SVM) to compare the precision of the proposed model. Experiments were performed on NIR spectral information (1050 wavelengths), colour (CIEL∗a∗b∗, chroma, and hue), water holding capacity (WHC), and pH of each sample analyzed. Results show that the best method was the REPTree based on 12 wavelengths, allowing for classification of poultry samples according to quality grades with 77.2% precision. The selected wavelengths could lead to potential simple multispectral acquisition devices.


Sign in / Sign up

Export Citation Format

Share Document