scholarly journals Identification and Characterization of an Early Leaf Senescence Gene ELS1 in Soybean

2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroshi Yamatani ◽  
Titnarong Heng ◽  
Tetsuya Yamada ◽  
Makoto Kusaba ◽  
Akito Kaga

Early leaf senescence phenotype in soybean could be helpful to shorten the maturation period and prevent green stem disorder. From a high-density mutation library, we identified two early leaf senescence soybean mutant lines, els1-1 (early leaf senescence 1) and els1-2. The chlorophyll contents of both els1-1 and els1-2 were low in pre-senescent leaves. They degraded rapidly in senescent leaves, revealing that ELS1 is involved in chlorophyll biosynthesis during leaf development and chlorophyll degradation during leaf senescence. The causal mutations in els1 were identified by next-generation sequencing-based bulked segregant analysis. ELS1 encodes the ortholog of the Arabidopsis CaaX-like protease BCM1, which is localized in chloroplasts. Soybean ELS1 was highly expressed in green tissue, especially in mature leaves. The accumulation of photosystem I core proteins and light-harvesting proteins in els1 was low even in pre-senescent leaves, and their degradation was accelerated during leaf senescence. These results suggest that soybean ELS1 is involved in both chlorophyll synthesis and degradation, consistent with the findings in Arabidopsis BCM1. The gene els1, characterized by early leaf senescence and subsequent early maturation, does not affect the flowering time. Hence, the early leaf senescence trait regulated by els1 helps shorten the harvesting period because of early maturation characteristics. The els1-1 allele with weakly impaired function of ELS1 has only a small effect on agricultural traits and could contribute to practical breeding.

2014 ◽  
Vol 165 (4) ◽  
pp. 1505-1520 ◽  
Author(s):  
Dmitry Yarmolinsky ◽  
Galina Brychkova ◽  
Assylay Kurmanbayeva ◽  
Aizat Bekturova ◽  
Yvonne Ventura ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kang Chen ◽  
Yang Huang ◽  
Chunni Liu ◽  
Yu Liang ◽  
Maoteng Li

Long non-coding RNAs (lncRNAs) play an important role in the response of plants to drought stress. The previous studies have reported that overexpression of LEA3 and VOC could enhance drought tolerance and improve the oil content in Brassica napus and Arabidopsis thaliana, and most of the efforts have been invested in the gene function analysis, there is little understanding of how genes that involved in these important pathways are regulated. In the present study, the transcriptomic results of LEA3 and VOC over-expressed (OE) lines were compared with the RNAi lines, mutant lines and control lines under long-term and short-term drought treatment, a series of differentially expressed lncRNAs were identified, and their regulation patterns in mRNA were also investigated in above mentioned materials. The regulation of the target genes of differentially expressed lncRNAs on plant biological functions was studied. It was revealed that the mutant lines had less drought-response related lncRNAs than that of the OE lines. Functional analysis demonstrated that multiple genes were involved in the carbon-fixing and chlorophyll metabolism, such as CDR1, CHLM, and CH1, were regulated by the upregulated lncRNA in OE lines. In LEA-OE, AT4G13180 that promotes the fatty acid synthesis was regulated by five lncRNAs that were upregulated under both long-term and short-term drought treatments. The key genes, including of SHM1, GOX2, and GS2, in the methylglyoxal synthesis pathway were all regulated by a number of down-regulated lncRNAs in OE lines, thereby reducing the content of such harmful compounds produced under stress in plants. This study identified a series of lncRNAs related to the pathways that affect photosynthesis, chlorophyll synthesis, fatty acid synthesis, degradation, and other important effects on drought resistance and oil content. The present study provided a series of lncRNAs for further improvement of crop varieties, especially drought resistant and oil content traits.


2019 ◽  
Vol 101 (1-2) ◽  
pp. 21-40 ◽  
Author(s):  
Stefan Kusch ◽  
Susanne Thiery ◽  
Anja Reinstädler ◽  
Katrin Gruner ◽  
Krzysztof Zienkiewicz ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 797-810
Author(s):  
Rajdeep S. Khangura ◽  
Bala P. Venkata ◽  
Sandeep R. Marla ◽  
Michael V. Mickelbart ◽  
Singha Dhungana ◽  
...  

We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


1973 ◽  
Vol 28 (1-2) ◽  
pp. 45-58 ◽  
Author(s):  
Hansjörg A. W. Schneider

The activities of enzymes related with chlorophyll and porphyrin synthesis have been examined during development and greening of young corn leaves. The enzymes succinyl-CoA-synthetase (SCoAS), δ-amino-levulinate synthetase (ALAS), δ-amino-levulinate dehydratase (ALAD) and the enzymes involved in porphobilinogenase (PBGA) were under investigaton. When leaves are illuminated and chlorophyll synthesis begins the activity of ALAD is not influenced. The activity of PBGA and SCoAS are slightly higher than in darkness, but the changes are below the range affecting chlorophyll biosynthesis. ALA, however, is only synthetized in the light. Synthesis ceases immediately when illuminiation ist stopped, indicating'that in darkness ALAS is not active. On the other hand ALAS is active in dark grown roots, tubers and other non-leaf tissues. Feeding the plant with succinate, glycine or α-keto-glutarate has no effect on chlorophyll synthesis, but the amount of ALA is reduced, whereas sucrose promotes its accumulation. The results are discussed with completely antitethaal results obtained with tissue cultures of tobacco and are integrated into a scheme which excludes the contrariety of hypotheses deduced from experi- ments with inhibitors of protein and nucleic acid synthesis. It is suggested that the varying results are caused by the action of light on different stages in differentiation of plastids and cells. In contrast to the enzymes SCoAS, ALAD and PBGA whose activities were determined in vitro, ALAS was assayed in vivo by means of the accumulation of (5-amino-levulinate (ALA) after blocking the enzyme ALAD by levulinate (LA). Optimum accumulation is observed when the concentration is about 2 · 10-2 м. LA is not converted to ALA in appreciable amounts. This could be proved by feeding the plants with 14C-LA which was prepared from uniformly labeled 14C-fructose.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 698
Author(s):  
Na Wang ◽  
Yanzhou Xie ◽  
Yingzhuang Li ◽  
Shengnan Wu ◽  
Shuxian Li ◽  
...  

Early leaf senescence negatively impacts the grain yield in wheat (Triticum aestivum L.). Induced mutants provide an important resource for mapping and cloning of genes for early leaf senescence. In our previous study, Els2, a single incomplete dominance gene, that caused early leaf senescence phenotype in the wheat mutant LF2099, had been mapped on the long arm of chromosome 2B. The objective of this study was to develop molecular markers tightly linked to the Els2 gene and construct a high-resolution map surrounding the Els2 gene. Three tightly linked single-nucleotide polymorphism (SNP) markers were obtained from the Illumina Wheat 90K iSelect SNP genotyping array and converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers. To saturate the Els2 region, the Axiom® Wheat 660K SNP array was used to screen bulked extreme phenotype DNA pools, and 9 KASP markers were developed. For fine mapping of the Els2 gene, these KASP markers and previously identified polymorphic markers were analyzed in a large F2 population of the LF2099 × Chinese Spring cross. The Els2 gene was located in a 0.24-cM genetic region flanked by the KASP markers AX-111643885 and AX-111128667, which corresponded to a physical interval of 1.61 Mb in the Chinese Spring chromosome 2BL containing 27 predicted genes with high confidence. The study laid a foundation for a map-based clone of the Els2 gene controlling the mutation phenotype and revealing the molecular regulatory mechanism of wheat leaf senescence.


2018 ◽  
Vol 177 ◽  
pp. 75-87 ◽  
Author(s):  
Liancheng Wu ◽  
Shunxi Wang ◽  
Lei Tian ◽  
Liuji Wu ◽  
Mingna Li ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 50 ◽  
Author(s):  
Xiaoxu Li ◽  
Salman Ahmad ◽  
Akhtar Ali ◽  
Cun Guo ◽  
Hong Li ◽  
...  

Leaf senescence is a genetically controlled process that involves the perception of extracellular signals and signal transduction. The receptor-like protein kinases (RLKs) are known to act as an important class of cell surface receptors and are involved in multiple biological processes such as development and stress responses. The functions of a number of RLK members have been characterized in Arabidopsis and other plant species, but only a limited number of RLK proteins have been reported to be associated with leaf senescence. In the present study, we have characterized the role of the somatic embryogenesis receptor kinase 4 (SERK4) gene in leaf senescence. The expression of SERK4 was up-regulated during leaf senescence and by several abiotic stress treatments in Arabidopsis. The serk4-1 knockout mutant was found to display a significant early leaf senescence phenotype. Furthermore, the results of overexpression analysis and complementary analysis supported the idea that SERK4 acts as a negative regulator in the process of leaf senescence.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Liting Sun ◽  
Yihua Wang ◽  
Ling-long Liu ◽  
Chunming Wang ◽  
Ting Gan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document