scholarly journals Assessing the Impact of Climate Change on Potential Distribution of Meconopsis punicea and Its Influence on Ecosystem Services Supply in the Southeastern Margin of Qinghai-Tibet Plateau

2022 ◽  
Vol 12 ◽  
Author(s):  
Ning Shi ◽  
Niyati Naudiyal ◽  
Jinniu Wang ◽  
Narayan Prasad Gaire ◽  
Yan Wu ◽  
...  

Meconopsis punicea is an iconic ornamental and medicinal plant whose natural habitat has degraded under global climate change, posing a serious threat to the future survival of the species. Therefore, it is critical to analyze the influence of climate change on possible distribution of M. punicea for conservation and sustainable utilization of this species. In this study, we used MaxEnt ecological niche modeling to predict the potential distribution of M. punicea under current and future climate scenarios in the southeastern margin region of Qinghai-Tibet Plateau. Model projections under current climate show that 16.8% of the study area is suitable habitat for Meconopsis. However, future projections indicate a sharp decline in potential habitat for 2050 and 2070 climate change scenarios. Soil type was the most important environmental variable in determining the habitat suitability of M. punicea, with 27.75% contribution to model output. Temperature seasonality (16.41%), precipitation of warmest quarter (14.01%), and precipitation of wettest month (13.02%), precipitation seasonality (9.41%) and annual temperature range (9.24%) also made significant contributions to model output. The mean elevation of suitable habitat for distribution of M. punicea is also likely to shift upward in most future climate change scenarios. This study provides vital information for the protection and sustainable use of medicinal species like M. punicea in the context of global environmental change. Our findings can aid in developing rational, broad-scale adaptation strategies for conservation and management for ecosystem services, in light of future climate changes.

Author(s):  
Yuan Gao ◽  
Zhibin He ◽  
Xi Zhu ◽  
Longfei Chen ◽  
Jun Du ◽  
...  

The Qinghai-Tibet Plateau in China is a region strongly impacted by climate change, yet its effects are unknown on the keystone endemic forest species, P. crassifolia. Understanding changes in potential distribution and habitat suitability of P. crassifolia forest with the climate change will contribute to water conservation, forest management, and ecological protection in the upper reaches of the Yellow River. A total of 129 records of species distribution data and 19 environmental variables were chosen for modeling. The MaxEnt model was used to analyze the main environmental factors affecting the potential distribution of P. crassifolia in two periods (2050s and 2070s) and four representative emission pathways (RCP2.6, RCP4.5, RCP6.0 and RCP 8.5). The main results are follows: (1) the most important environmental variables affecting distribution of P. crassifolia and percentage variance explained were: altitude (41.85%), precipitation of driest month (19.76%), slope (12.35%), annual precipitation (6.56%), precipitation of wettest month (5.73%), and precipitation of warmest quarter (5.12%), (2) habitat suitability of P. crassifolia shifted to the northwest and into high-altitude areas under climate change scenarios, but its core distribution areas were concentrated in northeastern Qinghai-Tibet Plateau, Qilian Mountains, southern Ningxia, and Helan Mountains, (3) total area of potential suitable habitat of P. crassifolia will change significantly in the future, and change of habitat area of not suitable, low, moderate, and high suitability exceed 60%.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2021 ◽  
Author(s):  
Ting Hua ◽  
Wenwu Zhao ◽  
Paulo Pereira

<p><strong>        </strong>Global warming has imposed a positive or adverse impact on ecosystem services and it will be further amplified in vulnerable areas like Qinghai-Tibet Plateau. However, there is a limited understanding of spatial interaction among ecosystem services and their climatic drivers at a fine resolution, regardless of the historical or future periods. This study attempted to fill this gap by detecting sensitivity and exposure of ecosystem services to climate change based on spatial moving window method, combined with Modis-based satellite datasets and various future scenarios dataset. We found that Carbon Sequence and Oxygen Production (CSOP) and habitat quality experienced significant growth, while water retention (WR) showed a fluctuation trend on the Qinghai-Tibet Plateau. For CSOP, 56.94% of the pixels showed a positive sensitivity to climate change, which is nearly twice the ones with negative sensitivity (26.72%). And there is an evident positive sensitivity between WR and precipitation. Also, there is substantial spatial heterogeneity in the exposure of ecosystem services to future climate changes. A high-emission pathway (SSP5-8.5) increases the intensity of exposure on ecosystem services than low-emission pathway, and disturbances accompanied by future climate change at specific elevation intervals should not be ignored. Identifying spatial association among the ecosystem services and climatic drivers is helpful for targeted management and sustainable development of soil in the context of global warming.</p><p><strong>Keywords</strong></p><p>Ecosystem services, Climate change, Qinghai-Tibet Plateau, Sensitivity, Exposure</p>


Author(s):  
Changjun Gu ◽  
Tu Yanli ◽  
Linshan Liu ◽  
Wei Bo ◽  
Yili Zhang ◽  
...  

Aim: Invasive alien species (IAS) threaten ecosystems and humans worldwide, and future climate change may accelerate the expansion of IAS. Predicting the suitable distributions of IAS can prevent their further expansion. Ageratina adenophora is a invasive weed over 30 countries in tropical and subtropical regions. However, the potential suitable distribution of A. adenophora remains unclear along with its response to climate change. This study explored and mapped the current and future potential distributions of Ageratina adenophora. Location: Global Taxa: Asteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as Crofton weed. Methods: Based on A. adenophora occurrence data and climate data, we predicted its potential distribution of this weed under current and future (four RCPs in 2050 and 2070) by MaxEnt model. We used ArcGIS 10.4 to explore the distribution characteristics of this weed and the ‘ecospat’ package in R to analyse its altitudinal distribution changes. Results: The area under the curve value (>0.9) indicated excelled model performance. Among environment factors, Mean Temperature of Coldest Quarter contributed most to the model. Globally, the suitable habitat for A.adenophora invasion decreased under climate change scenarios, although regional increase were observed, including in six biodiversity hotspot regions. The potential suitable habitat of A.adenophora under climate change moved toward regions with higher elevation. Main Conclusions: Temperature was the most important variable influencing the distribution of A. Adenophora. Under the background of warming climate, the potential distribution range of A.adenophora will shrink globally but increase regionally. The distribution of A.adenophora will shift toward higher elevation under climate change. Mountain ecosystems are of special concern as they are rich in biodiversity and sensitive to climate change, and increasing human activities provide more opportunities for IAS invasion.


2020 ◽  
Vol 12 (4) ◽  
pp. 1491
Author(s):  
Xuhui Zhang ◽  
Haiyan Wei ◽  
Zefang Zhao ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.


2021 ◽  
Vol 13 (19) ◽  
pp. 10488
Author(s):  
Yiru Jia ◽  
Jifu Liu ◽  
Lanlan Guo ◽  
Zhifei Deng ◽  
Jiaoyang Li ◽  
...  

Slope geohazards, which cause significant social, economic and environmental losses, have been increasing worldwide over the last few decades. Climate change-induced higher temperatures and shifted precipitation patterns enhance the slope geohazard risks. This study traced the spatial transference of slope geohazards in the Qinghai-Tibet Plateau (QTP) and investigated the potential climatic factors. The results show that 93% of slope geohazards occurred in seasonally frozen regions, 2.6% of which were located in permafrost regions, with an average altitude of 3818 m. The slope geohazards are mainly concentrated at 1493–1988 m. Over time, the altitude of the slope geohazards was gradually increased, and the mean altitude tended to spread from 1984 m to 2562 m by 2009, while the slope gradient varied only slightly. The number of slope geohazards increased with time and was most obvious in spring, especially in the areas above an altitude of 3000 m. The increase in temperature and precipitation in spring may be an important reason for this phenomenon, because the results suggest that the rate of air warming and precipitation at geohazard sites increased gradually. Based on the observation of the spatial location, altitude and temperature growth rate of slope geohazards, it is noted that new geohazard clusters (NGCs) appear in the study area, and there is still a possibility of migration under the future climate conditions. Based on future climate forecast data, we estimate that the low-, moderate- and high-sensitivity areas of the QTP will be mainly south of 30° N in 2030, will extend to the south of 33° N in 2060 and will continue to expand to the south of 35° N in 2099; we also estimate that the proportion of high-sensitivity areas will increase from 10.93% in 2030 to 14.17% in 2060 and 17.48% in 2099.


Author(s):  
Fang Wang ◽  
Duo Wang ◽  
Ge Guo ◽  
Meixia Zhang ◽  
Jiayi Lang ◽  
...  

Abstract Ceroplastes cirripediformis Comstock is one of the most destructive invasive pests that have caused various negative impacts to agricultural, ornamental, and greenhouse plants. Since it is time- and labor-consuming to control C. cirripediformis, habitat evaluation of this pest may be the most cost-effective method for predicting its dispersal and avoiding its outbreaks. Here, we evaluated the effects of climatic variables on distribution patterns of C. cirripediformis and produced a global risk map for its outbreak under current and future climate scenarios using the Maximum Entropy (MaxEnt) model. Our results showed that mean temperature of driest quarter (Bio 9), precipitation of coldest quarter (Bio 19), precipitation of warmest quarter (Bio 18), and mean temperature of wettest quarter (Bio 8) were the main factors influencing the current modeled distribution of C. cirripediformis, respectively, contributing 41.9, 29.4, 18.8, and 7.9%. The models predicted that, globally, potential distribution of C. cirripediformis would be across most zoogeographical regions under both current and future climate scenarios. Moreover, in the future, both the total potential distribution region and its area of highly suitable habitat are expected to expand slightly in all representative concentration pathway scenarios. The information generated from this study will contribute to better identify the impacts of climate change upon C. cirripediformis’s potential distribution while also providing a scientific basis for forecasting insect pest spread and outbreaks. Furthermore, this study serves an early warning for the regions of potential distribution, predicted as highly suitable habitats for this pest, which could promote its prevention and control.


2019 ◽  
Vol 66 (2) ◽  
pp. 178-190 ◽  
Author(s):  
E Silvério ◽  
J Duque-Lazo ◽  
R M Navarro-Cerrillo ◽  
F Pereña ◽  
G Palacios-Rodríguez

Abstract It is predicted that changes in climate will lead to episodes of large forest decline and mortality. Therefore, the distributions of forest plantations and natural stands might already be facing such impacts. We selected the most arid zone of south-eastern Europe (eastern Andalusia) to assess how the distributions of Pinus halepensis Miller. and Pinus pinaster Aiton forest plantations and natural stands cope with climate change and to determine whether natural or planted distributions would be more stable under future climate-change scenarios. We used presence-point locations from natural distributions, obtained from the third Spanish National Forest Inventory, to develop ensemble species distribution models. The forecast predicted a slight increase in the potential distribution of both species by 2040, with a subsequent drastic decrease until 2099. Pinus halepensis had larger current and future potential distributions than P. pinaster but a slightly greater decrease with time in the potential distribution than that of P. pinaster. On the other hand, the natural and planted distributions of P. halepensis were more vulnerable to future climate change scenarios than those of P. pinaster. Natural populations will likely be more resilient to climate change than planted populations.


Sign in / Sign up

Export Citation Format

Share Document