scholarly journals Sequential Congruency Effects of Reverse Stroop Interference on Event-Related Potential Components for Go- and Nogo-Stimuli

2021 ◽  
Vol 12 ◽  
Author(s):  
Kota Suzuki

Sequential congruency effects are observed in interference tasks, in which reaction times (RTs) are shorter for congruent stimuli preceded by congruent (cC) than incongruent stimuli (iC), and RTs are longer for incongruent stimuli preceded by congruent (cI) than incongruent stimuli (iI). These effects are interpreted as resulting from incongruent stimuli triggering attentional control in the next trial, which reduces cognitive control. This study aimed to examine sequential congruency effects on event-related potential (ERP) components for Go- and Nogo-stimuli. We used the hybrid reverse Stroop Go/Nogo task. The stimuli were Kanji characters, “赤” (i.e., red) and “青” (i.e., blue) painted in congruent and incongruent colors. Participants responded to one of the two characters (i.e, the Go-stimulus) and stopped responding to the other character (i.e., the Nogo-stimulus). The results indicated that the Nogo-N1 was reduced by trials preceded by incongruent stimuli compared with congruent ones, suggesting that color processing was inhibited by attentional control; however, there was no reduction in the Go-N1. In addition, the Nogo-N2 amplitudes were larger for cI than iI and iC than cC. On the other hand, the Go-N2 was not modulated by sequential modulation effects, which was lower for incongruent stimuli than congruent stimuli. These results indicate that the Nogo-N2 is involved in cognitive control, whereas the Go-N2 is associated with selection processing. These findings suggest that the modulation of sequential congruency effects of N1 and N2 required the response inhibition task demand; however, Go-P3 and Nogo-P3 amplitudes were the largest for cI. Therefore, the time range of ERP components might be related to the susceptibility of an interaction effect between response inhibition task demand and sequential congruency effects.

2021 ◽  
Author(s):  
Kota Suzuki

Abstract Sequential congruency effects are observed in interference tasks, in which RTs are shorter for congruent stimuli preceded by congruent (cC) than incongruent stimuli (iC), and RTs are longer for incongruent stimuli preceded by congruent (cI) than incongruent stimuli (iI). These effects are interpreted as resulting from incongruent stimuli triggering attentional control in the next trial, which reduces cognitive control. The aim of this study was to examine sequential congruency effects on ERP components for Go- and Nogo-stimuli using the hybrid reverse Stroop Go/Nogo task. Results indicated that the Nogo-N1 was reduced by trials preceded by incongruent stimuli compared to congruent ones, suggesting that color processing was inhibited by attentional control. However, there was no reduction in the Go-N1. Moreover, the Nogo-N2 amplitudes were larger for cI than iI and iC than cC. On the other hand, the Go-N2 was not modulated by sequential modulation effects, which was lower for incongruent stimuli than congruent stimuli. These results indicate that the Nogo-N2 is involved in cognitive control, whereas the Go-N2 is associated with selection processing. Therefore, it was suggested that response inhibition task demands are necessary for modulating the ERP components by sequential congruency effects.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S63-S63
Author(s):  
Ya Wang ◽  
Lu-xia Jia ◽  
Xiao-jing Qin ◽  
Jun-yan Ye ◽  
Raymond Chan

Abstract Background Schizotypy, a subclinical group at risk for schizophrenia, have been found to show impairments in response inhibition. Recent studies differentiated proactive inhibition (a preparatory process before the stimuli appears) and reactive inhibition (the inhibition of a pre-potent or already initiated response). However, it remains unclear whether both proactive and reactive inhibition are impaired in schizotypy and what are the neural mechanisms. The present event-related potential study used an adapted stop-signal task to examine the two inhibition processes and the underlying neural mechanisms in schizotypy compared to healthy controls (HC). Methods A total of 21 individuals with schizotypy and 25 matched HC participated in this study. To explore different degrees of proactive inhibition, we set three conditions: a “certain” go condition which no stop signal occurred, a “17% no go” condition in which stop signal would appear in 17% of trials, and a “33% no go” condition in which stop signal would appear in 33% of trials. All participants completed all the conditions, and EEG was recorded when participants completed the task. Results Behavioral results showed that in both schizotypy and HC, the reaction times (RT) of go trials were significantly prolonged as the no go percentage increased, and HC showed significantly longer go RT compared with schizotypy in both “17% no go” and “33% no go” conditions, suggesting greater proactive inhibition in HC. Stop signal reaction times (SSRTs) in “33% no go” condition was shorter than “17% no go” condition in both groups. Schizotypy showed significantly longer SSRTs in both “17% no go” and “33% no go” conditions than HC, indicating schizotypy relied more on reactive inhibition. ERP results showed that schizotypy showed larger overall N1 for go trials than HC irrespective of condition, which may indicate a compensation process in schizotypy. Schizotypy showed smaller N2 on both successful and unsuccessful stop trials in “17% no go” conditions than HC, while no group difference was found in “33% no go” conditions for stop trials, which may indicate impaired error processing. Discussion These results suggested that schizotypy tended to be impaired in both proactive control and reactive control processes.


2014 ◽  
Author(s):  
Jaime Martin del Campo ◽  
John Maltby ◽  
Giorgio Fuggetta

The present study tested the Dysexecutive Luck hypothesis by examining whether deficits in the early stage of top down attentional control led to an increase of neural activity in later stages of response related selection process among those who thought themselves to be unlucky. Individuals with these beliefs were compared to a control group using an Event-Related Potential (ERP) measure assessing underlying neural activity of semantic inhibition while completing a Stroop test. Results showed stronger main interference effects in the former group, via greater reaction times and a more negative distributed scalp late ERP component during incongruent trials in the time window of 450 – 780 ms post stimulus onset. Further, less efficient maintenance of task set among the former group was associated with greater late ERP response-related activation to compensate for the lack of top-down attentional control. These findings provide electrophysiological evidence to support the Dysexecutive Luck hypothesis.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e34482 ◽  
Author(s):  
Christopher R. Brydges ◽  
Karen Clunies-Ross ◽  
Madeleine Clohessy ◽  
Zhao Li Lo ◽  
An Nguyen ◽  
...  

2014 ◽  
Author(s):  
Jaime Martin del Campo ◽  
John Maltby ◽  
Giorgio Fuggetta

The present study tested the Dysexecutive Luck hypothesis by examining whether deficits in the early stage of top down attentional control led to an increase of neural activity in later stages of response related selection process among those who thought themselves to be unlucky. Individuals with these beliefs were compared to a control group using an Event-Related Potential (ERP) measure assessing underlying neural activity of semantic inhibition while completing a Stroop test. Results showed stronger main interference effects in the former group, via greater reaction times and a more negative distributed scalp late ERP component during incongruent trials in the time window of 450 – 780 ms post stimulus onset. Further, less efficient maintenance of task set among the former group was associated with greater late ERP response-related activation to compensate for the lack of top-down attentional control. These findings provide electrophysiological evidence to support the Dysexecutive Luck hypothesis.


2003 ◽  
Vol 17 (1) ◽  
pp. 14-22 ◽  
Author(s):  
J. Peter Rosenfeld ◽  
Archana Rao ◽  
Matthew Soskins ◽  
Antoinette Reinhart Miller

Abstract Subjects participated in two trial blocks of an autobiographical oddball paradigm. In the first block, 14% of the stimuli were the subject's phone number, 86% were other, meaningless numbers. Subjects responded yes or no, verbally and truthfully. In the second block, stimuli were dates, and the oddball was the subject's birthdate. Subjects again responded verbally, but dishonestly on about 50% of the trials and truthfully on the other 50%. Reaction times differed between the first and the second blocks, but not between the honest and dishonest trials of the second block. P300 amplitude was reduced in dishonest trials of the second block. Honest trials of both blocks had similar P300 amplitudes. Scaled scalp distributions were the same for honest trials of both blocks, but differed between honest and dishonest trials of the second block. There were no latency effects. The results are discussed from the viewpoint that task demand effects do not mediate the P300 differences between honest and dishonest responses.


2018 ◽  
Author(s):  
Russell Weili Chan ◽  
Phillip M. Alday ◽  
Lena Zou ◽  
Kurt Lushington ◽  
Matthias Schlesewsky ◽  
...  

Previous work found that single-session focused attention meditation (FAM) enhanced motor sequence learning through increased cognitive control as a mechanistic action, although electrophysiological correlates of sequence learning performance following FAM were not investigated. We measured the persistent frontal N2 event-related potential (ERP) that is closely related to cognitive control processes and its ability to predict behavioural measures. Twenty-nine participants were randomised to one of three conditions reflecting the level of FAM experienced prior to a serial reaction time task (SRTT): 21 sessions of FAM (FAM21, N= 12), a single FAM session (FAM1, N= 9) or no preceding FAM control (Control, N= 8). Continuous 64-channel EEG were recorded during SRTT and N2 amplitudes for correct trials were extracted. Component amplitude, regions of interests, and behavioural outcomes were compared using mixed effects regression models between groups. FAM21 exhibited faster reaction time performances in majority of the learning blocks compared to FAM1 and Control. FAM21 also demonstrated a significantly more pronounced N2 over majority of anterior and central regions of interests during SRTT compared to the other groups. When N2 amplitudes were modelled against general learning performance, FAM21 showed the greatest rate of amplitude decline over anterior and central regions. The combined results suggest that FAM training provided greater cognitive control enhancement for improved sequence learning performance compared to the other groups. Importantly, FAM training facilitates dynamic modulation of cognitive control: lower levels of general learning performance was supported by greater levels of activation, whilst higher levels of general learning required less activation.


2019 ◽  
Vol 31 (3) ◽  
pp. 377-389 ◽  
Author(s):  
Julia Föcker ◽  
Matin Mortazavi ◽  
Wayne Khoe ◽  
Steven A. Hillyard ◽  
Daphne Bavelier

Action video game players (AVGPs) outperform non–action video game players (NAVGPs) on a range of perceptual and attentional tasks. Although several studies have reported neuroplastic changes within the frontoparietal networks of attention in AVGPs, little is known about possible changes in attentional modulation in low-level visual areas. To assess the contribution of these different levels of neural processing to the perceptual and attentional enhancements noted in AVGPs, visual event-related potentials (ERPs) were recorded from 14 AVGPs and 14 NAVGPs during a target discrimination task that required participants to attend to rapid sequences of Gabor patches under either focused or divided attention conditions. AVGPs responded faster to target Gabors in the focused attention condition compared with the NAVGPs. Correspondingly, ERPs to standard Gabors revealed a more pronounced negativity in the time range of the parietally generated anterior N1 component in AVGPs compared with NAVGPs during focused attention. In addition, the P2 component of the visual ERP was more pronounced in AVGPs than in NAVGPs over the hemisphere contralateral to the stimulus position in response to standard Gabors. Contrary to predictions, however, attention-modulated occipital components generated in the low-level extrastriate visual pathways, including the P1 and posterior N1, showed no significant group differences. Thus, the main neural signature of enhanced perceptual and attentional control functions in AVGPs appears linked to an attention-dependent parietal process, indexed by the anterior N1 component, and possibly to more efficient higher-order perceptual processing, indexed by the P2 component.


2020 ◽  
Author(s):  
Hoi Ming Ken Yip ◽  
Leo Y. T. Cheung ◽  
Yetta Kwailing Wong ◽  
Alan C.-N. Wong

AbstractAt which phase(s) does task demand affect object processing? Previous studies showed that task demand affects object representations in higher-level visual areas but not so much in earlier areas. There are, however, limitations in those studies concerning the relatively weak manipulation of task due to the use of familiar real-life objects, and/or the low temporal resolution in brain activation measures such as fMRI. In the current study, observers categorized images of artificial objects in one of two orthogonal dimensions, shape and texture. Electroencephalogram (EEG), a technique with higher temporal resolution, and multivariate pattern analysis (MVPA) were employed to reveal object processing across time under different task demands. Results showed that object processing along the task-relevant dimension was enhanced starting from a relatively late time (∼230ms after image onset), within the time range of the event-related potential (ERP) components N170 and N250. The findings are consistent with the view that task exerts an effect on object processing at the later phases of processing in the ventral visual pathway.


2019 ◽  
Vol 4 (6) ◽  
pp. 1482-1488
Author(s):  
Jennifer J. Thistle

Purpose Previous research with children with and without disabilities has demonstrated that visual–perceptual factors can influence the speech of locating a target on an array. Adults without disabilities often facilitate the learning and use of a child's augmentative and alternative communication system. The current research examined how the presence of symbol background color influenced the speed with which adults without disabilities located target line drawings in 2 studies. Method Both studies used a between-subjects design. In the 1st study, 30 adults (ages 18–29 years) located targets in a 16-symbol array. In the 2nd study, 30 adults (ages 18–34 years) located targets in a 60-symbol array. There were 3 conditions in each study: symbol background color, symbol background white with a black border, and symbol background white with a color border. Results In the 1st study, reaction times across groups were not significantly different. In the 2nd study, participants in the symbol background color condition were significantly faster than participants in the other conditions, and participants in the symbol background white with black border were significantly slower than participants in the other conditions. Conclusion Communication partners may benefit from the presence of background color, especially when supporting children using displays with many symbols.


Sign in / Sign up

Export Citation Format

Share Document