scholarly journals Egocentric and Allocentric Reference Frames Can Flexibly Support Contextual Cueing

2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zheng ◽  
Jan-Gabriel Dobroschke ◽  
Stefan Pollmann

We investigated if contextual cueing can be guided by egocentric and allocentric reference frames. Combinations of search configurations and external frame orientations were learned during a training phase. In Experiment 1, either the frame orientation or the configuration was rotated, thereby disrupting either the allocentric or egocentric and allocentric predictions of the target location. Contextual cueing survived both of these manipulations, suggesting that it can overcome interference from both reference frames. In contrast, when changed orientations of the external frame became valid predictors of the target location in Experiment 2, we observed contextual cueing as long as one reference frame was predictive of the target location, but contextual cueing was eliminated when both reference frames were invalid. Thus, search guidance in repeated contexts can be supported by both egocentric and allocentric reference frames as long as they contain valid information about the search goal.

NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 887-897 ◽  
Author(s):  
Stefan Pollmann ◽  
Jana Eštočinová ◽  
Susanne Sommer ◽  
Leonardo Chelazzi ◽  
Wolf Zinke

2015 ◽  
Vol 114 (6) ◽  
pp. 3211-3219 ◽  
Author(s):  
J. J. Tramper ◽  
W. P. Medendorp

It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms.


2005 ◽  
Vol 94 (4) ◽  
pp. 2331-2352 ◽  
Author(s):  
O'Dhaniel A. Mullette-Gillman ◽  
Yale E. Cohen ◽  
Jennifer M. Groh

The integration of visual and auditory events is thought to require a joint representation of visual and auditory space in a common reference frame. We investigated the coding of visual and auditory space in the lateral and medial intraparietal areas (LIP, MIP) as a candidate for such a representation. We recorded the activity of 275 neurons in LIP and MIP of two monkeys while they performed saccades to a row of visual and auditory targets from three different eye positions. We found 45% of these neurons to be modulated by the locations of visual targets, 19% by auditory targets, and 9% by both visual and auditory targets. The reference frame for both visual and auditory receptive fields ranged along a continuum between eye- and head-centered reference frames with ∼10% of auditory and 33% of visual neurons having receptive fields that were more consistent with an eye- than a head-centered frame of reference and 23 and 18% having receptive fields that were more consistent with a head- than an eye-centered frame of reference, leaving a large fraction of both visual and auditory response patterns inconsistent with both head- and eye-centered reference frames. The results were similar to the reference frame we have previously found for auditory stimuli in the inferior colliculus and core auditory cortex. The correspondence between the visual and auditory receptive fields of individual neurons was weak. Nevertheless, the visual and auditory responses were sufficiently well correlated that a simple one-layer network constructed to calculate target location from the activity of the neurons in our sample performed successfully for auditory targets even though the weights were fit based only on the visual responses. We interpret these results as suggesting that although the representations of space in areas LIP and MIP are not easily described within the conventional conceptual framework of reference frames, they nevertheless process visual and auditory spatial information in a similar fashion.


2018 ◽  
Vol 15 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Alessandro Iavarone ◽  
Tina Iachini

Objective: Deficits in egocentric (subject-to-object) and allocentric (object-to-object) spatial representations, with a mainly allocentric impairment, characterize the first stages of the Alzheimer's disease (AD). Methods: To identify early cognitive signs of AD conversion, some studies focused on amnestic-Mild Cognitive Impairment (aMCI) by reporting alterations in both reference frames, especially the allocentric ones. However, spatial environments in which we move need the cooperation of both reference frames. Such cooperating processes imply that we constantly switch from allocentric to egocentric frames and vice versa. This raises the question of whether alterations of switching abilities might also characterize an early cognitive marker of AD, potentially suitable to detect the conversion from aMCI to dementia. Here, we compared AD and aMCI patients with Normal Controls (NC) on the Ego-Allo- Switching spatial memory task. The task assessed the capacity to use switching (Ego-Allo, Allo-Ego) and non-switching (Ego-Ego, Allo-Allo) verbal judgments about relative distances between memorized stimuli. Results: The novel finding of this study is the neat impairment shown by aMCI and AD in switching from allocentric to egocentric reference frames. Interestingly, in aMCI when the first reference frame was egocentric, the allocentric deficit appeared attenuated. Conclusion: This led us to conclude that allocentric deficits are not always clinically detectable in aMCI since the impairments could be masked when the first reference frame was body-centred. Alongside, AD and aMCI also revealed allocentric deficits in the non-switching condition. These findings suggest that switching alterations would emerge from impairments in hippocampal and posteromedial areas and from concurrent dysregulations in the locus coeruleus-noradrenaline system or pre-frontal cortex.


Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


1997 ◽  
Vol 352 (1360) ◽  
pp. 1515-1524 ◽  
Author(s):  
J. Bures ◽  
A. A. Fenton ◽  
Yu. Kaminsky ◽  
J. Rossier ◽  
B. Sacchetti ◽  
...  

Navigation by means of cognitive maps appears to require the hippocampus; hippocampal place cells (PCs) appear to store spatial memories because their discharge is confined to cell–specific places called firing fields (FFs). Experiments with rats manipulated idiothetic and landmark–related information to understand the relationship between PC activity and spatial cognition. Rotating a circular arena in the light caused a discrepancy between these cues. This discrepancy caused most FFs to disappear in both the arena and room reference frames. However, FFs persisted in the rotating arena frame when the discrepancy was reduced by darkness or by a card in the arena. The discrepancy was increased by ’field clamping’the rat in a room–defined FF location by rotations that countered its locomotion. Most FFs dissipated and reappeared an hour or more after the clamp. Place–avoidance experiments showed that navigation uses independent idiothetic and exteroceptive memories. Rats learned to avoid the unmarked footshock region within a circular arena. When acquired on the stable arena in the light, the location of the punishment was learned by using both room and idiothetic cues; extinction in the dark transferred to the following session in the light. If, however, extinction occurred during rotation, only the arena–frame avoidance was extinguished in darkness; the room–defined location was avoided when the lights were turned back on. Idiothetic memory of room–defined avoidance was not formed during rotation in light; regardless of rotation, there was no avoidance when the lights were turned off, but room–frame avoidance reappeared when the lights were turned back on. The place–preference task rewarded visits to an allocentric target location with a randomly dispersed pellet. The resulting behaviour alternated between random pellet searching and target–directed navigation, making it possible to examine PC correlates of these two classes of spatial behaviour. The independence of idiothetic and exteroceptive spatial memories and the disruption of PC firing during rotation suggest that PCs may not be necessary for spatial cognition; this idea can be tested by recordings during the place–avoidance and preference tasks.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general relativity, the latter is that of quantum mechanics and information.Ciclicity in the manner of Nicolas Cusanus (Nicolas of Cusa) is complemented as a fundamental and definitive property of any totality, e.g. physically, that of the universe. It has to contain its externality within it somehow being namely the totality. This implies a seemingly paradoxical (in fact, only to common sense rather logically and mathematically) viewpoint for the universe to be repesented within it as each one quant of action according to the fundamental Planck constant.That approach implies the unification of gravity and entanglement correspondiing to the former or latter class of reference frames. An invariance, more general than Einstein's general covariance is to be involved as to both classes of reference frames unifying them. Its essence is the unification of the discrete and cotnitinuous (smooth). That idea underlies implicitly quantum mechanics for Bohr's principle that it study the system of quantum microscopic entities and the macroscopic apparatus desribed uniformly by the smmoth equations of classical physics.e


2021 ◽  
Author(s):  
Daniel Mota ◽  
Erick Alves ◽  
Elisabetta Tedeschi

Manuscript submitted to the Twenty-second IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2021).<div>Abstract: Dual-sequence current controllers of voltage source converters (VSCs) feature two separate rotating reference frames (RRFs), commonly named dq frames, and rely on techniques that isolate the positive and negative sequences of three-phase measurements. One of these techniques is the delayed signal cancellation (DSC). It is performed in the stationary reference frame (SRF), also known as αβ frame. The DSC combines old values of one axis with new values of the other axis of the SRF. The results are, then, transformed into the RRFs for use in the current controller. This filtering process introduces an extra layer of complexity for dual-sequence current controllers, which could otherwise operate solely in the RRFs. This paper introduces a frequency adaptive DSC method that operates directly in the RRF. Moreover, an averaging of two of the proposed DSC filters with contiguous integer delays is employed for reducing discretization errors caused by grid frequency excursions. A formal proof of the equivalence between the αβ and dq DSC methods is presented. Furthermore, computer simulations of a case study support the interpretation of the results.</div>


2021 ◽  
Author(s):  
Daniel Mota ◽  
Erick Alves ◽  
Elisabetta Tedeschi

Manuscript submitted to the Twenty-second IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2021).<div>Abstract: Dual-sequence current controllers of voltage source converters (VSCs) feature two separate rotating reference frames (RRFs), commonly named dq frames, and rely on techniques that isolate the positive and negative sequences of three-phase measurements. One of these techniques is the delayed signal cancellation (DSC). It is performed in the stationary reference frame (SRF), also known as αβ frame. The DSC combines old values of one axis with new values of the other axis of the SRF. The results are, then, transformed into the RRFs for use in the current controller. This filtering process introduces an extra layer of complexity for dual-sequence current controllers, which could otherwise operate solely in the RRFs. This paper introduces a frequency adaptive DSC method that operates directly in the RRF. Moreover, an averaging of two of the proposed DSC filters with contiguous integer delays is employed for reducing discretization errors caused by grid frequency excursions. A formal proof of the equivalence between the αβ and dq DSC methods is presented. Furthermore, computer simulations of a case study support the interpretation of the results.</div>


Sign in / Sign up

Export Citation Format

Share Document