scholarly journals Effects of Daytime Electric Light Exposure on Human Alertness and Higher Cognitive Functions: A Systematic Review

2022 ◽  
Vol 12 ◽  
Author(s):  
Mushfiqul Anwar Siraji ◽  
Vineetha Kalavally ◽  
Alexandre Schaefer ◽  
Shamsul Haque

This paper reports the results of a systematic review conducted on articles examining the effects of daytime electric light exposure on alertness and higher cognitive functions. For this, we selected 59 quantitative research articles from 11 online databases. The review protocol was registered with PROSPERO (CRD42020157603). The results showed that both short-wavelength dominant light exposure and higher intensity white light exposure induced alertness. However, those influences depended on factors like the participants’ homeostatic sleep drive and the time of day the participants received the light exposure. The relationship between light exposure and higher cognitive functions was not as straightforward as the alerting effect. The optimal light property for higher cognitive functions was reported dependent on other factors, such as task complexity and properties of control light. Among the studies with short-wavelength dominant light exposure, ten studies (morning: 3; afternoon: 7) reported beneficial effects on simple task performances (reaction time), and four studies (morning: 3; afternoon: 1) on complex task performances. Four studies with higher intensity white light exposure (morning: 3; afternoon: 1) reported beneficial effects on simple task performance and nine studies (morning: 5; afternoon: 4) on complex task performance. Short-wavelength dominant light exposure with higher light intensity induced a beneficial effect on alertness and simple task performances. However, those effects did not hold for complex task performances. The results indicate the need for further studies to understand the influence of short-wavelength dominant light exposure with higher illuminance on alertness and higher cognitive functions.

1992 ◽  
Vol 36 (4) ◽  
pp. 316-320 ◽  
Author(s):  
J. F. Kelley ◽  
J. Ukelson

12 participants with a high level of domain experience used two different, mouse-based, interaction techniques to carry out three workstation file management tasks of varying complexity. One technique followed a standard Object-Action model; the other was a newly developed technique called COAS (Combined Object-Action Selection). There was little difference in performance on a simple task; performance for participants using the new technique was 38% faster on a moderately complex task and was 21% faster on a complex task. The file management application, interaction techniques and experiment were implemented in an OS/2 Presentation Manager style using ITS (Interactive Transaction System).


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 883
Author(s):  
Kohei Sakaki ◽  
Rui Nouchi ◽  
Yutaka Matsuzaki ◽  
Toshiki Saito ◽  
Jérôme Dinet ◽  
...  

It is well known that physical exercise has beneficial effects on cognitive function in older adults. Recently, several physical exercise programs with virtual reality (VR) have been proposed to support physical exercise benefits. However, it is still unclear whether VR physical exercise (VR-PE) has positive effects on cognitive function in older adults. The purpose of this study was to conduct a systematic review (SR) of the effects of VR-PE on cognitive function in older adults with and without cognitive decline. We used academic databases to search for research papers. The criteria were intervention study using any VR-PE, participants were older adults with and without mild cognitive decline (not dementia), and cognitive functions were assessed. We found that 6 of 11 eligible studies reported the significant benefits of the VR-PE on a wide range of cognitive functions in aging populations. The SR revealed that VR-PE has beneficial effects on the inhibition of executive functions in older adults with and without mild cognitive decline. Moreover, VR-PE selectively leads to improvements in shifting and general cognitive performance in healthy older adults. The SR suggests that VR-PE could be a successful approach to improve cognitive function in older adults with and without cognitive decline.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ari Shechter ◽  
Kristal A Quispe ◽  
Jennifer S Mizhquiri Barbecho ◽  
Cody Slater ◽  
Louise Falzon

Abstract The sleep-wake and circadian cycles are influenced by light, particularly in the short-wavelength portion of the visible spectrum. Most personal light-emitting electronic devices are enriched in this so-called “blue” light. Exposure to these devices in the evening can disturb sleep. Interventions to reduce short-wavelength light exposure before bedtime may reduce adverse effects on sleep. We conducted a systematic review and meta-analysis to examine the effect of wearing color-tinted lenses (e.g. orange or amber) in frames to filter short-wavelength light exposure to the eye before nocturnal sleep. Outcomes were self-reported or objective measures of nocturnal sleep. Relatively few (k = 12) studies have been done. Study findings were inconsistent, with some showing benefit and others showing no effect of intervention. Meta-analyses yielded a small-to-medium magnitude combined effect size for sleep efficiency (Hedge’s g = 0.31; 95% CI: −0.05, 0.66; I2 = 38.16%; k = 7), and a small-to-medium combined effect size for total sleep time (Hedge’s g = 0.32; 95% CI: 0.01, 0.63; I2 = 12.07%; k = 6). For self-report measures, meta-analysis yielded a large magnitude combined effects size for Pittsburgh Sleep Quality Index ratings (Hedge’s g = −1.25; 95% CI: −2.39, −0.11; I2 = 36.35%; k = 3) and a medium combined effect size for total sleep time (Hedge’s g = 0.51; 95% CI: 0.18, 0.84; I2 = 0%; k = 3), Overall, there is some, albeit mixed, evidence that this approach can improve sleep, particularly in individuals with insomnia, bipolar disorder, delayed sleep phase syndrome, or attention-deficit hyperactive disorder. Considering the ubiquitousness of short-wavelength-enriched light sources, future controlled studies to examine the efficacy of this approach to improve sleep are warranted. Systematic review registration: PROSPERO 2018 CRD42018105854.


1992 ◽  
Vol 36 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Joseph D. Chase ◽  
Sherry Perdue Casali ◽  
H. Rex Hartson

The ability to predict performance with a cursor control device on a complex task by measuring performance on a simple task would be useful in evaluating alternative input devices in many types of novel situations. A user would simply have to perform simple cursor movements with each candidate device, and predictions could be made of his/her performance with the devices on any given software application. Such an approach would reduce tedious trial and error procedures, as well as eliminate the time necessary to first learn various software applications. The current study employed the User Action Notation (UAN), a task-oriented notation that describes the behavior of the user and the interface during their cooperative performance of a task, to decompose complex tasks into primitive components. A set of primitive cursor actions was developed which contains the elementary cursor actions found in complex tasks. A graphics software application was then evaluated, using the UAN, with respect to the frequency of occurrence of each of the primitive user-cursor actions. Individual's ability to perform each primitive user-cursor action with three different input devices was then be measured. These measures were used to form estimates of the individual's ability to perform the graphics task with each input device. Correlations between predicted performance and measured performance on the graphics task were found to exceed 0.9. Results demonstrate the success of the method described herein for predicting complex task performance based on simple task performance, as well as, the usefulness of the UAN for decomposing complex tasks into primitive components.


2021 ◽  
Vol 2 ◽  
Author(s):  
Quentin Chenot ◽  
Evelyne Lepron ◽  
Xavier De Boissezon ◽  
Sébastien Scannella

Performance in complex tasks is essential for many high risk operators. The achievement of such tasks is supported by high-level cognitive functions arguably involving functional activity and connectivity in a large ensemble of brain areas that form the fronto-parietal network. Here we aimed at determining whether the functional connectivity at rest within this network could predict performance in a complex task: the Space Fortress video game. Functional Near Infrared Spectroscopy (fNIRS) data from 32 participants were recorded during a Resting-State period, the completion of a simple version of Space Fortress (monotask) and the original version (multitask). The intrinsic functional connectivity within the fronto-parietal network (i.e., during the Resting-State) was a significant predictor of performance at Space Fortress multitask but not at its monotask version. The same pattern was observed for the functional connectivity during the task. Our overall results suggest that Resting-State functional connectivity within the fronto-parietal network could be used as an intrinsic brain marker for performance prediction of a complex task achievement, but not for simple task performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leilah K. Grant ◽  
Brianne A. Kent ◽  
Matthew D. Mayer ◽  
Robert Stickgold ◽  
Steven W. Lockley ◽  
...  

We tested the effect of daytime indoor light exposure with varying melanopic strength on cognitive performance in college-aged students who maintained an enforced nightly sleep opportunity of 7 h (i.e., nightly sleep duration no longer than 7 h) for 1 week immediately preceding the day of light exposure. Participants (n = 39; mean age ± SD = 24.5 ± 3.2 years; 21 F) were randomized to an 8 h daytime exposure to one of four white light conditions of equal photopic illuminance (~50 lux at eye level in the vertical plane) but different melanopic illuminance [24–45 melanopic-EDI lux (melEDI)] generated by varying correlated color temperatures [3000K (low-melEDI) or 5000K (high-melEDI)] and spectra [conventional or daylight-like]. Accuracy on a 2-min addition task was 5% better in the daylight-like high-melEDI condition (highest melEDI) compared to the conventional low-melEDI condition (lowest melEDI; p < 0.01). Performance speed on the motor sequence learning task was 3.2 times faster (p < 0.05) during the daylight-like high-melEDI condition compared to the conventional low-melEDI. Subjective sleepiness was 1.5 times lower in the conventional high-melEDI condition compared to the conventional low-melEDI condition, but levels were similar between conventional low- and daylight-like high-melEDI conditions. These results demonstrate that exposure to high-melanopic (short wavelength-enriched) white light improves processing speed, working memory, and procedural learning on a motor sequence task in modestly sleep restricted young adults, and have important implications for optimizing lighting conditions in schools, colleges, and other built environments.


Sign in / Sign up

Export Citation Format

Share Document