scholarly journals A Monte Carlo Analysis of Actual Maximum Exposure From a 5G Millimeter-Wave Base Station Antenna for EMF Compliance Assessments

2022 ◽  
Vol 9 ◽  
Bo Xu ◽  
David Anguiano Sanjurjo ◽  
Davide Colombi ◽  
Christer Törnevik

International radio frequency (RF) electromagnetic field (EMF) exposure assessment standards and regulatory bodies have developed methods and specified requirements to assess the actual maximum RF EMF exposure from radio base stations enabling massive multiple-input multiple-output (MIMO) and beamforming. Such techniques are based on the applications of power reduction factors (PRFs), which lead to more realistic, albeit conservative, exposure assessments. In this study, the actual maximum EMF exposure and the corresponding PRFs are computed for a millimeter-wave radio base station array antenna. The computed incident power densities based on near-field and far-field approaches are derived using a Monte Carlo analysis. The results show that the actual maximum exposure is well below the theoretical maximum, and the PRFs similar to those applicable for massive MIMO radio base stations operating below 6 GHz are also applicable for millimeter-wave frequencies. Despite the very low power levels that currently characterize millimeter-wave radio base stations, using the far-field approach can also guarantee the conservativeness of the PRFs used to assess the actual maximum exposure close to the antenna.

Telecom ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 211-227
Stephan Bucher ◽  
Christian Waldschmidt

Noncoherent detection in massive multiple-input/multiple-output (MIMO) uplink systems provides a low-complexity alternative to its coherent counterpart. Requiring no actual channel knowledge but the per-user induced power at the base station, comparable performance as channel-estimation-based detection can be achieved when the users are located in the near-field of the base station. However, noncoherent detection fails in scenarios where users are in the far-field due to an insufficient capability to separate the users in terms of their spatially induced power. For this purpose, a dielectric lens or an analog beamforming structure can be employed, which are capable to focus the power of the incident waves to a smaller subset of the antennas at the base station. These so-called analog beamspace techniques have been demonstrated to enable again the noncoherent detection scheme. Analogous to a spatial Fourier transform, beamspace techniques can be also realized in the digital domain offering more flexibility. Its applicability to noncoherent detection is studied in this paper. It is shown numerically that by means of digital beamspace preprocessing, considerable performance gains can be achieved. Applied in dominant line-of-sight channels, a large number of users can be accommodated and the residual performance gap to coherent detection with perfect channel knowledge is minimal.

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6561
Pingchuan Liu ◽  
Kuangang Fan ◽  
Yuhang Chen

Over the last decade, unmanned aerial vehicles (UAVs) with antenna arrays have usually been employed for the enhancement of wireless communication in millimeter-wave bands. They are commonly used as aerial base stations and relay platforms in order to serve multiple users. Many beamforming methods for improving communication quality based on channel estimation have been proposed. However, these methods can be resource-intensive due to the complexity of channel estimation in practice. Thus, in this paper, we formulate an MIMO blind beamforming problem at the receivers for UAV-assisted communications in which channel estimation is omitted in order to save communication resources. We introduce one analytical method, which is called the analytical constant modulus algorithm (ACMA), in order to perform blind beamforming at the UAV base station; this relies only on data received by the antenna. The feature of the constant modulus (CM) is employed to restrict the target user signals. Algebraic operations, such as singular value decomposition (SVD), are applied to separate the user signal space from other interferences. The number of users in the region served by the UAV can be detected by exploring information in the measured data. We seek solutions that are expressible as one Kronecker product structure in the signal space; then, the beamformers that correspond to each user can be successfully estimated. The simulation results show that, by using this analytically derived blind method, the system can achieve good signal recovery accuracy, a reasonable system sum rate, and acceptable complexity.

2015 ◽  
Vol 18 (3) ◽  
pp. 92-101
Kha Hoang Ha ◽  
Long Dinh Nguyen ◽  
Tuan Hong Do

This paper is concerned with the joint linear precoder design problem for the multiuser multiple-input multiple-output (MIMO) heterogeneous networks (HetNets) in which multiple femto base stations (FBSs) coexist with a macro base station (MBS). To tackle the inter-user interference in the macrocell, we exploit the blockdiagonalization scheme and then use the convex optimization to maximize the sum rate of the macrocell. The FBS transmission strategy is to maximize the sum-rate of femtocells subject to the transmitted power constraints per FBS and restrictions on the cross-tier interference to macro-users (MUs). Such a design problem is typically nonconvex, and, thus, challenging to find the FBS precoders. We reformulate the design problem of the FBS precoders as a d.c. (difference of convex functions) programming, and develop an efficient iterative algorithm to obtain the optimal precoders. Numerical simulation results show that the proposed algorithm outperforms the other methods in terms of the total sum-rate of the HetNet.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Jianguo Li ◽  
Xiangming Li ◽  
Aihua Wang ◽  
Neng Ye

Enabling nonorthogonal multiple access (NOMA) in device-to-device (D2D) communications under the millimeter wave (mmWave) multiple-input multiple-output (MIMO) cellular network is of critical importance for 5G wireless systems to support low latency, high reliability, and high throughput radio access. In this paper, the closed-form expressions for the outage probability and the ergodic capacity in downlink MIMO-NOMA mmWave cellular network with D2D communications are considered, which indicates that NOMA outperforms TDMA. The influencing factors of performance, such as transmission power and antenna number, are also analyzed. It is found that higher transmission power and more antennas in the base station can decrease the outage probability and enhance the ergodic capacity of NOMA.

Cheng Hu ◽  
Jingyang Wang ◽  
Weiming Tian ◽  
Tao Zeng ◽  
Rui Wang

MIMO (multiple-input multiple-output) radar provides much more flexibility than the traditional radar for its ability to realize far more observation channels than the actual number of T/R (transmit and receive) elements. Designing the array of MIMO imaging radar, the commonly used virtual array theory generally assumes that all elements are placed on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, resulting in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation, leading to inevitable high grating lobes in the imaging result of near-field edge points of the scene observed by common MIMO array. To tackle these problems, this paper derives the relationship between target’s PSF (point spread function) and pattern of T/R arrays, by which the design criterion of near-field imaging MIMO array is presented. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by simulations and an experiment.

2018 ◽  
Vol 8 (1) ◽  

Service technicians on mobile phone base stations systems are exposed to electromagnetic waves in the near field. In this area, the values of electrical and magnetic field can overload maximal exposure limit defined by standards. The subject in this paper is health risk of a service technician. It is important to calculate electrical field in the body of a service technician who moves in the vicinity of base station in order to estimate their health status. Key words: Near electromagnetic field, service technicians, health risk from electromagnetic field.

Farah Akif ◽  
Aqdas Malik ◽  
Ijaz Qureshi ◽  
Ayesha Abassi

With the advancement in wireless communication technology, the ease of accessibility and increasing coverage area is a major challenge for service providers. Network densification through Small cell Base Stations (SBS) integration in Heterogeneous Networks (HetNets) promises to improve network performance for cell edge users. Since providing wired backhaul for small cells is not cost effective or practical, the third-Generation Partnership Project (3GPP) has developed architecture for self-backhaul known as Integrated Access and Backhaul (IAB) for Fifth Generation (5G). This allows for Main Base Station (MBS) resources to be shared between SBS and MBS users. However, fair and efficient division of MBS resources remains a problem to be addressed. We develop a novel transmit antenna selection/partitioning technique for taking advantage of IAB 5G standard for Massive Multiple Input Multiple Output (MIMO) HetNets. Transmit antenna resources are divided among access for MBS users and for providing wireless backhaul for SBS. We develop A Genetic Algorithm (GA) based Transmit Antenna Selection (TAS) scheme and compare with random selection, eigenvalue-based selection and bandwidth portioning. Our analysis show that GA based TAS has the ability to converge to an optimum antenna subset providing better rate coverage. Furthermore, we also signify the performance of TAS based partitioning over bandwidth partitioning and also show user association can also be controlled using number of antennas reserved for access or backhaul.

Sign in / Sign up

Export Citation Format

Share Document