scholarly journals Teaching Multiple Inverse Reinforcement Learners

2021 ◽  
Vol 4 ◽  
Author(s):  
Francisco S. Melo ◽  
Manuel Lopes

In this paper, we propose the first machine teaching algorithm for multiple inverse reinforcement learners. As our initial contribution, we formalize the problem of optimally teaching a sequential task to a heterogeneous class of learners. We then contribute a theoretical analysis of such problem, identifying conditions under which it is possible to conduct such teaching using the same demonstration for all learners. Our analysis shows that, contrary to other teaching problems, teaching a sequential task to a heterogeneous class of learners with a single demonstration may not be possible, as the differences between individual agents increase. We then contribute two algorithms that address the main difficulties identified by our theoretical analysis. The first algorithm, which we dub SplitTeach, starts by teaching the class as a whole until all students have learned all that they can learn as a group; it then teaches each student individually, ensuring that all students are able to perfectly acquire the target task. The second approach, which we dub JointTeach, selects a single demonstration to be provided to the whole class so that all students learn the target task as well as a single demonstration allows. While SplitTeach ensures optimal teaching at the cost of a bigger teaching effort, JointTeach ensures minimal effort, although the learners are not guaranteed to perfectly recover the target task. We conclude by illustrating our methods in several simulation domains. The simulation results agree with our theoretical findings, showcasing that indeed class teaching is not possible in the presence of heterogeneous students. At the same time, they also illustrate the main properties of our proposed algorithms: in all domains, SplitTeach guarantees perfect teaching and, in terms of teaching effort, is always at least as good as individualized teaching (often better); on the other hand, JointTeach attains minimal teaching effort in all domains, even if sometimes it compromises the teaching performance.

2013 ◽  
Vol 333-335 ◽  
pp. 623-627
Author(s):  
Jing Jun Li ◽  
Yong Hua Jiang ◽  
Bo Dan ◽  
Wei Wei Gao

Orthogonal discrete frequency coding waveforms(DFCWs) is an ideal quasi-orthogonal waveform. This paper analyses the ambiguity function of DFCWs and the results indicate that the correlation characteristics of DFCWs have only relationship with the code length and coding order. Based on the theoretical analysis, we defined the cross-correlation energy as the cost function, and used the improved discrete particle swarmoptimization(DPSO) to optimize the order of DFCWs. The new signal can effectively restrain the cross-correlation level between the two DFCWs. Simulation results verify the effectiveness of the designed DFCWs.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Jiun-Wei Horng

This paper describes a current-mode third-order quadrature oscillator based on current differencing transconductance amplifiers (CDTAs). Outputs of two current-mode sinusoids with90°phase difference are available in the quadrature oscillator circuit. The oscillation condition and oscillation frequency are orthogonal controllable. The proposed circuit employs only grounded capacitors and is ideal for integration. Simulation results are included to confirm the theoretical analysis.


Robotica ◽  
2021 ◽  
pp. 1-22
Author(s):  
Limin Shen ◽  
Yuanmei Wen

Abstract Repetitive motion planning (RMP) is important in operating redundant robotic manipulators. In this paper, a new RMP scheme that is based on the pseudoinverse formulation is proposed for redundant robotic manipulators. Such a scheme is derived from the discretization of an existing RMP scheme by utilizing the difference formula. Then, theoretical analysis and results are presented to show the characteristic of the proposed RMP scheme. That is, this scheme possesses the characteristic of cube pattern in the end-effector planning precision. The proposed RMP scheme is further extended and studied for redundant robotic manipulators under joint constraint. Based on a four-link robotic manipulator, simulation results substantiate the effectiveness and superiority of the proposed RMP scheme and its extended one.


2021 ◽  
Vol 263 (6) ◽  
pp. 388-393
Author(s):  
Wenjiang Wang ◽  
Xianhui Li ◽  
Junjuan Zhao ◽  
Peng Zhang ◽  
Xinyun Li ◽  
...  

In this paper, a nonlinear electroacoustic absorber based on a tunable loudspeaker is proposed to broaden its sound absorption bandwidth. The main mechanism is a nonlinear circuit is coupled at loudspeaker's terminal. A series of theoretical analysis and simulation work are carried out in this paper. The equivalent model is composed of a linear term describing the loudspeaker and a nonlinear term of a coupled Duffing-van Der Pol bistable circuit. The invariant manifold method is used to solve different time scales. The analysis and simulation results show that the nonlinear circuit can widen the frequency bandwidth of the structure.


Author(s):  
Anastasiya Alekseevna Romanova

The author’s definition of inter-organizational cooperation, interorganizational management accounting and inter-organizational accounting and analytical system and cost calculation system in the framework of inter-organizational relations is given in the article on the basis of theoretical analysis. The features of calculating the cost of interorganizational cooperation are defined, new accounting practices are described, the advantages of implementing this type of accounting are identified, and possible problem areas are identified.


2014 ◽  
Vol 536-537 ◽  
pp. 1527-1531
Author(s):  
Ya Feng Li ◽  
Zi Wei Zheng

The Series Dynamic Voltage Regulator can compensate the harmonics distortion caused by voltage type harmonic source This paper presents a new approach of detecting harmonic voltage in dq0 coordinates, based on the generalized instantaneous reactive power ,and used in the series dynamic voltage regulator successfully. It is demonstrated by theoretical analysis and simulation results that the proposed detecting method of harmonic voltage is correct and valid.


2015 ◽  
Vol 6 ◽  
Author(s):  
Eneas Aguirre-von-Wobeser ◽  
Luis E. Eguiarte ◽  
Valeria Souza ◽  
Gloria Soberón-Chávez

2021 ◽  
Vol 6 ◽  
pp. 41
Author(s):  
Hussein A. Kazem ◽  
Anas Quteishat ◽  
Mahmoud A. Younis

Solar water pumping systems are fundamental entities for water transmission and storage purposes whether it is has been used in irrigation or residential applications. The use of photovoltaic (PV) panels to support the electrical requirements of these pumping systems has been executed globally for a long time. However, introducing optimization sizing techniques to such systems can benefit the end-user by saving money, energy, and time. This paper proposed solar water pumping systems optimum design for Oman. The design, and evaluation have been carried out through intuitive, and numerical methods. Based on hourly meteorological data, the simulation used both HOMER software and numerical method using MATLAB code to find the optimum design. The selected location ambient temperature variance from 12.8 °C to 44.5 °C over the year and maximum insolation is 7.45 kWh/m2/day, respectively. The simulation results found the average energy generated, annual yield factor, and a capacity factor of the proposed system is 2.9 kWh, 2016.66 kWh/kWp, and 22.97%, respectively, for a 0.81 kW water pump, which is encouraging compared with similar studied systems. The capital cost of the system is worth it, and the cost of energy has compared with other systems in the literature. The comparison shows the cost of energy to be in favor of the MATLAB simulation results with around 0.24 USD/kWh. The results show successful operation and performance parameters, along with cost evaluation, which proves that PV water pumping systems are promising in Oman.


Author(s):  
Abdellah Benallal ◽  
◽  
Nawel Cheggaga ◽  

Renewable energy hybrid systems give a good solution in isolated sites, in the Algerian desert; wind and solar potentials are considerably perfect for a combination in a renewable energy hybrid system to satisfy local village electrical load and minimize the storage requirements, which leads to reduce the cost of the installation. For a good sizing, it is essential to know accurately the solar potential of the installation area also wind potential at the same height where wind electric generators will be placed. In this work, we optimize a completely autonomous PV-wind hybrid system and show the techno-economical effects of the height of the wind turbine on the sizing of the hybrid system. We also compare the simulation results obtained from using wind speed measured data at 10 meters and 40 meters of height with the ones obtained from using wind speed extrapolation on HOMER software.


Sign in / Sign up

Export Citation Format

Share Document