scholarly journals A Social-Ecological Approach to Studying Variation in Urban Trees and Ecosystem Services in the National Municipal District of Santo Domingo, Dominican Republic

2022 ◽  
Vol 3 ◽  
Author(s):  
Elvia J. Meléndez-Ackerman ◽  
Mervin E. Pérez ◽  
Ana B. Pou Espinal ◽  
Claudia Caballero ◽  
Leonardo Cortés ◽  
...  

Maintaining a diverse urban forest that provides ecosystem services can promote urban sustainability and resilience to environmental change. Around the world, cities have taken to inventorying their urban trees and quantifying their ecosystem services but more so in industrialized counties than in Latin America. Here we describe the results of an i-Tree inventory that established 206 survey plots in the National Municipal District of Santo Domingo (NMDSD). We used social-ecological theory to evaluate potential factors that may influence urban forest structure, composition, and ecosystem services diversity across three wards with distinct social and urban characteristics. Rarefaction curves showed a diverse urban forest dominated by non-native trees that have ornamental and medicinal uses. Wards differed in species composition with palms being particularly dominant in Wards 1 and 2 where the proportion of low-income houses is smaller. Ward 1 supports high-income residential areas and Ward 3 is the area with higher population and housing densities and lower income residents. On average, we found no significant differences among wards in tree species richness, average dbh, leaf area, and percent tree cover per plot. Trees in Ward 2 were taller, on average, than those in Ward 1 but were comparable to those in Ward 3. Likewise, tree density per plot was highest in Ward 2, followed by Ward 1 and Ward 3. Despite these significant differences in stem densities, average values in four ecosystem services involving measures of carbon, rainfall, and contaminants (C-sequestration, C-storage, avoided runoff, and removal of air pollutants) were non-significant across wards. We found disproportionately more street trees in Ward 1 relative to Wards 2 and 3 and more trees in public spaces in Wards 1 and 2 relative to Ward 3. Evidence for the luxury effect on tree distribution in the NMDSD was subtle and manifested mostly through differences in species composition and tree distribution across public and private domains as well as the amount of planting space. Overall results point to inequalities in the potential of reforestation among NMDS wards and an overabundance of non-native species, which should guide urban forest management with ecosystem services and conservation goals.

2018 ◽  
Vol 04 (04) ◽  
pp. 1850022 ◽  
Author(s):  
Benjamin A. Jones ◽  
John Fleck

Managing outdoor water use while maintaining urban tree cover is a key challenge for water managers in arid climates. Urban trees generate flows of ecosystem services in arid areas, but also require significant amounts of irrigation. In this paper, a bioeconomic-health model of trees and water use is developed to investigate management of an urban forest canopy when irrigation is costly, water has economic value, and trees provide ecosystem services. The optimal tree irrigation decision is illustrated for Albuquerque, New Mexico, an arid Southwest US city. Using a range of monetary values for water, we find that the tree irrigation decision is sensitive to the value selected. Urban deforestation is optimal when the value of water is sufficiently high, or alternatively starts low, but grows to cross a specific threshold. If, however, the value of water is sufficiently low or if the value of tree cover rises over time, then deforestation is not optimal. The threshold value of water where the switch is made between zero and partial deforestation is well within previously identified ranges on actual water values. This model can be applied generally to study the tradeoffs between urban trees and water use in arid environments.


Author(s):  
Z. Uçar ◽  
R. Eker ◽  
A. Aydin

Abstract. Urban trees and forests are essential components of the urban environment. They can provide numerous ecosystem services and goods, including but not limited to recreational opportunities and aesthetic values, removal of air pollutants, improving air and water quality, providing shade and cooling effect, reducing energy use, and storage of atmospheric CO2. However, urban trees and forests have been in danger of being lost by dense housing resulting from population growth in the cities since the 1950s, leading to increased local temperature, pollution level, and flooding risk. Thus, determining the status of urban trees and forests is necessary for comprehensive understanding and quantifying the ecosystem services and goods. Tree canopy cover is a relatively quick, easy to obtain, and cost-effective urban forestry metric broadly used to estimate ecosystem services and goods of the urban forest. This study aimed to determine urban forest canopy cover areas and monitor the changes between 1984–2015 for the Great Plain Conservation area (GPCA) that has been declared as a conservation Area (GPCA) in 2017, located on the border of Düzce City (Western Black Sea Region of Turkey). Although GPCA is a conservation area for agricultural purposes, it consists of the city center with 250,000 population and most settlement areas. A random point sampling approach, the most common sampling approach, was applied to estimate urban tree canopy cover and their changes over time from historical aerial imageries. Tree canopy cover ranged from 16.0% to 27.4% within the study period. The changes in urban canopy cover between 1984–1999 and 1999–2015 were statistically significant, while there was no statistical difference compared to the changes in tree canopy cover between 1984–2015. The result of the study suggested that an accurate estimate of urban tree canopy cover and monitoring long-term canopy cover changes are essential to determine the current situation and the trends for the future. It will help city planners and policymakers in decision-making processes for the future of urban areas.


Data ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 145
Author(s):  
Fabien H. Wagner ◽  
Mayumi C.M. Hirye

Mapping urban trees with images at a very high spatial resolution (≤1 m) is a particularly relevant recent challenge due to the need to assess the ecosystem services they provide. However, due to the effort needed to produce these maps from tree censuses or with remote sensing data, few cities in the world have a complete tree cover map. Here, we present the tree cover data at 1-m spatial resolution of the Metropolitan Region of São Paulo, Brazil, the fourth largest urban agglomeration in the world. This dataset, based on 71 orthorectified RGB aerial photographs taken in 2010 at 1-m spatial resolution, was produced using a deep learning method for image segmentation called U-net. The model was trained with 1286 images of size 64 × 64 pixels at 1-m spatial resolution, containing one or more trees or only background, and their labelled masks. The validation was based on 322 images of the same size not used in the training and their labelled masks. The map produced by the U-net algorithm showed an excellent level of accuracy, with an overall accuracy of 96.4% and an F1-score of 0.941 (precision = 0.945 and recall = 0.937). This dataset is a valuable input for the estimation of urban forest ecosystem services, and more broadly for urban studies or urban ecological modelling of the São Paulo Metropolitan Region.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 311
Author(s):  
Xiaoyang Tan ◽  
Satoshi Hirabayashi ◽  
Shozo Shibata

Street trees are integral components of urban green infrastructure. The importance of benefits provided by street trees has motivated the development of various tools to quantify the value of ecosystem services. The i-Tree Eco is a widely applied method for quantifying urban forest structure, ecosystem services, and values. Since its first release in 2006, i-Tree Eco has been successfully utilized in over 100 countries around the world. This study described one of the first applications of the i-Tree Eco international project in Kyoto, Japan, by customizing the models and parameters to enhance the accuracy of analysis results. Kyoto’s street trees are prominently dominated by Ginkgo (Ginkgo biloba L.), Trident Maple (Acer buergerianum Miq.), Japanese Zelkova (Zelkova serrata (Thunb.) Makino.), Tuliptree (Liriodendron tulipifera L.), Flowering dogwood (Cornus florida L.), London Planetree (Platanus × acerifolia), Plum/cherry (Prunus spp.), and Weeping willow (Salix babylonica), which account for 92% of the 1230 sample trees and deliver ecosystem service benefits at US$71,434.21 annually or US$58.07/tree/year. The annual value of each function was estimated at US$41.34/tree for carbon storage and sequestration, US$3.26/tree for stormwater runoff reduction, US$11.80/tree for adverse health mitigation effects, and US$1.67/tree for energy savings. The street tree species of Kyoto city that produce the highest average annual benefits are among the largest trees currently in the population, including P. × yedoensis (US$225.32/tree), Z. serrata (US$123.21/tree), S. babylonica (US$80.10/tree), and P. × acerifolia (US$65.88/tree). Our results demonstrated a comprehensive understanding of street trees benefits for Kyoto city, providing baseline information for decision-makers and managers to make effective urban trees management decisions, developing policy, and setting priorities.


2008 ◽  
Vol 34 (6) ◽  
pp. 347-358
Author(s):  
David Nowak ◽  
Daniel Crane ◽  
Jack Stevens ◽  
Robert Hoehn ◽  
Jeffrey Walton ◽  
...  

To properly manage urban forests, it is essential to have data on this important resource. An efficient means to obtain this information is to randomly sample urban areas. To help assess the urban forest structure (e.g., number of trees, species composition, tree sizes, health) and several functions (e.g., air pollution removal, carbon storage and sequestration), the Urban Forest Effects (UFORE) model was developed. Data collection variables and model methods are detailed and urban forest structure results are compared among 14 United States cities with average tree density ranging between 22.5 trees/ha (9.1 trees/ac) in Casper, Wyoming, U.S. to 275.8 trees/ha (111.6 trees/ac) in Atlanta, Georgia, U.S. Advantages and disadvantages of this ground-based method of assessing urban forest structure, functions, and values are discussed.


2020 ◽  
Author(s):  
Hingabu Hordofa Koricho ◽  
Ararsa Derese Seboka ◽  
Fekadu Fufa ◽  
Tikabo Gebreyesus ◽  
Shaoxian Song

Abstract Background this study was conducted to explore the ecosystem services of urban forests in Adama city, central Ethiopia. Attempts were made to quantify the carbon storage and sequestration, air pollution removal and hydrological benefits of urban trees. The urban forest stracture and composition of the city was surveyed and analyzed. The i-Tree Eco Model was employed to analyze the ecosystem services based on the current urban forests structure of the city. Results the result revealed that the urban trees of the Adama city stored a total of 116,000 tons of carbon. The tree species identified with higher CO2 sequestration per year were Melia azedarach (15%), Eucalyptusglobulus (8%, Carica papaya(7%), and Delonix regia (6%). Approximately 22, 12, 10 and 4% of carbon were stored by Eucalyptus globulus, Melia azedarach, Carica papaya and Delonix regia tree species respectively. Moreover, trees and shrubs spps. in the city removed about 188 thousand tons of air pollutants caused by O3, CO, NO2, PM2.5 and SO2 per year. In Adama, 35% of the urban trees’ VOC emissions were from Eucalyptus cinerea and Eucalyptus globulus. The monetary value of Adama urban forest in terms of carbon storage, carbon sequestration, and pollution removal was estimated to 43,781, 3,121 yr− 1 and 320,915,596 USD yr− 1, respectively. Conclusions it was concluded that significant quantiy of CO2 and air pollutnants were found being removed by the exotic tree and shrub species. However, every plant species found in the city does not mean ecologically important due their VOC emitting nature. Thus, proper planning and inventories of urban forests should be put in place by the key stakeholders such as government, urban foresters and city dwellers as urban trees mitigates climate changes and essential to alleviate urban pollution besides the trees add esthetic value to the city.


2021 ◽  
Author(s):  
Hingabu Hordofa Koricho ◽  
Ararsa Derese Seboka ◽  
Fekadu Fufa ◽  
Tikabo Gebreyesus ◽  
Shaoxian Song

Abstract Background this study was conducted to explore the ecosystem services of urban forests in Adama city, central Ethiopia. Attempts were made to quantify the carbon storage and sequestration, air pollution removal and hydrological benefits of urban trees. The urban forest structure and composition of the city was surveyed and analyzed. The i-Tree Eco Model was employed to analyze the ecosystem services based on the current urban forests structure of the city. Results the result revealed that the urban trees of the Adama city stored a total of 116,000 tons of carbon. The tree species identified with higher CO2 sequestration per year were Melia azedarach (15%), Eucalyptusglobulus (8%), Carica papaya (7%), and Delonix regia (6%). In addition, 22%, 12%, 10% and 4% of carbon were stored by Eucalyptus globulus, Melia azedarach, Carica papaya and Delonix regia tree species respectively. Moreover, trees and shrubs species in the city removed about 188 thousand tons of air pollutants caused by O3, CO, NO2, PM2.5 and SO2 per year. In Adama, 35% of the urban trees’ volatile organic compaound emissions were from Eucalyptus cinerea and Eucalyptus globulus. The monetary value of Adama urban forest in terms of carbon storage, carbon sequestration, and pollution removal was estimated to 43,781, 3,121 yr− 1 and 320,915,596 USD yr− 1, respectively. Conclusions it was concluded that significant quantity of CO2 and air pollutants were found being removed by the exotic tree and shrub species. However, every plant species found in the city does not mean ecologically important due their VOC emitting nature. Thus, the results of the study are valuable in increasing the awareness of the decision making bodies, the public and any stakeholders of the eco-benefits of urban trees in the mitigation of climate changes.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 884
Author(s):  
Solhanlle Bonilla-Duarte ◽  
Víctor Gómez-Valenzuela ◽  
Alma-Liz Vargas-de la Mora ◽  
Agustín García-García

Cities are territories vulnerable to climate change. An alternative to increase resilience and mitigate the effects of the climate context is urban forest planning to increase ecosystem services. This research constructed a forest cover sustainability index, based on 147 semi-structured interviews with residents of four residential areas of the city of Santo Domingo (Gazcue, Zona Colonial, Ciudad Nueva, and San Carlos), in which information was collected based on both benefit perception and tree management in their home and nearby public areas. The socioeconomic characteristics of the population and the information gathered from the measurements of the urban forest in both public and private areas of the city during the 2016–2019 period were considered, including these four residential areas, which established the ecosystem services provided by the urban forest. The results showed that Gazcue had a higher value in the forest cover sustainability index. The factors that influenced this result were: job stability, medium-high income, and property ownership. Likewise, the added value of the territory, whether in terms of tourism or the socioeconomic value of the population that inhabits it, is closely related to a greater attention to urban planning, prioritizing the conservation and landscape harmony that the arboreal component can provide. In conclusion, urban forest planning in cities should consider tree species, the design and structure of spatial arrangements, and a competent legal framework that can meet the challenges of territorial sustainability and contribute to the resilience and mitigation of climate change impacts.


2021 ◽  
Vol 13 (13) ◽  
pp. 7227
Author(s):  
Jeannine H. Richards ◽  
Ingrid M. Torrez Luna ◽  
Alberto Vargas

Shade-grown coffee is an important reservoir for tropical biodiversity, but habitat quality hinges on decisions made by farmers. Our research aims to investigate the link between coffee producers’ decisions and outcomes for biodiversity, using epiphytes as our focal group. Using qualitative methods, we interviewed 33 producers in northern Nicaragua to understand how they connect trees and epiphytes on their farms to ecosystem services and how personal values, access to agronomic expertise, labor supply, and financial stability influence decision-making. We used interview responses to construct six producer typologies. Most producers had strong positive attitudes toward trees and associated them with a variety of important ecosystem services. Smallholders were more likely to connect trees with provisioning services, while producers on larger farms and with greater agronomic knowledge emphasized regulating services. Most producers connected epiphytes primarily with aesthetic values. Across demographics, producers emphasized the restorative potential for shade coffee in repairing damage to soil, water, and nutrient cycles caused by other forms of agriculture. The conservation significance and sustainability of this social-ecological system can be maintained and expanded through economic and capacity-building conservation interventions, especially when those can be connected to values already held by farmers.


2020 ◽  
pp. 1-7
Author(s):  
Alfonso Langle-Flores ◽  
Adriana Aguilar Rodríguez ◽  
Humberto Romero-Uribe ◽  
Julia Ros-Cuéllar ◽  
Juan José Von Thaden

Summary Payments for ecosystem services (PES) programmes have been considered an important conservation mechanism to avoid deforestation. These environmental policies act in social and ecological contexts at different spatial scales. We evaluated the social-ecological fit between stakeholders and ecosystem processes in a local PES programme across three levels: social, ecological and social-ecological. We explored collaboration among stakeholders, assessed connectivity between forest units and evaluated conservation activity links between stakeholders and forest units. In addition, to increase programme effectiveness, we classified forest units based on their social and ecological importance. Our main findings suggest that non-governmental organizations occupy brokerage positions between landowners and government in a dense collaboration network. We also found a partial spatial misfit between conservation activity links and the forest units that provide the most hydrological services to Xalapa. We conclude that conservation efforts should be directed towards the middle and high part of the Pixquiac sub-watershed and that the role of non-governmental organizations as mediators should be strengthened to increase the efficiency and effectiveness of the local PES programme.


Sign in / Sign up

Export Citation Format

Share Document