scholarly journals Aquifer Storage and Recovery Feasibility Study With Flowing Fluid Electrical Conductivity Logging in Shallow Aquifers of South Bihar, India

2022 ◽  
Vol 3 ◽  
Author(s):  
Anurag Verma ◽  
Prabhakar Sharma

Growing dependence on groundwater to fulfill the water demands has led to continuous depletion of groundwater levels and, consequently, poses the maintenance of optimum groundwater and management challenge. The region of South Bihar faces regular drought and flood situations, and due to the excessive pumping, the groundwater resources are declining. Rainwater harvesting has been recommended for the region; however, there are no hydrogeological studies concerning groundwater recharge. Aquifer storage and recovery (ASR) is a managed aquifer recharge technique to store excess water in the aquifer through borewells to meet the high-water demand in the dry season. Therefore, this paper presents the hydrogeological feasibility for possible ASR installations in shallow aquifers of South Bihar with the help of flowing fluid electrical conductivity (FFEC) logging. For modeling, the well logging data of two shallow borewells (16- and 47-m depth) at Rajgir, Nalanda, were used to obtain the transmissivity and thickness of the aquifers. The estimated transmissivities were 804 m2/day with an aquifer thickness of 5 m (in between 11 and 16 m) at Ajatshatru Residential Hall (ARH) well. They were 353 and 1,154 m2/day with the aquifer thicknesses of 6 m (in between 16 and 22 m) and 2 m (in between 45 and 47 m), respectively, at Nalanda University Campus (NUC) well. Despite the acceptable transmissivities at these sites, those aquifers may not be fruitful for the medium- to large-scale (more than 100-m3/day injection rate) ASR as the thickness of the aquifers is relatively small and may not efficiently store and withdraw a large amount of water. However, these aquifers can be adequate for small (up to 20-m3/day injection rate) ASR, for example, groundwater recharge using rooftop water. For medium- to large-scale ASR, deeper aquifers need to be further explored on these sites or aquifers with similar characteristics.

2021 ◽  
Author(s):  
Abolfazl Rezaei

Abstract The ability to predict future variability of groundwater resources in time and space is of critical
importance in society’s adaptation to climate variability and change. Periodic control of large scale ocean-atmospheric circulations on groundwater levels proposes a potentially effective source of longer term forecasting capability. In this study, as a first national-scale assessment, we use the continues wavelet transform, global power spectrum, and wavelet coherence analyses to quantify the controls of the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and El Niño Southern Oscillation (ENSO) over the representative groundwater levels of the 24 principal aquifers, scattered across different 14 climate zones of Iran. The results demonstrate that aquifer storage variations are partially controlled by annual to interdecadal climate variability and are not solely a function of pumping variations. Moreover, teleconnections are observed to be both frequency and time specific. The significant coherence patterns between the climate indices and groundwater levels are observed at five frequency bands of the annual (~1-yr), interannual (2-4- and 4-6-yr), decadal (8-12-yr), and interdecadal (14-18yr), consistent with the dominant modes of climate indices. AMO’s strong footprint is observed at interdecadal and annual modes of groundwater levels while PDO’s highest imprint is seen in interannual, decadal, and interdecadal modes. The highest controlling influence of ENSO is observed across the decadal and interannual modes whereas the NAO’s footprint is marked at annual and interdecadal frequency bands. Further, it is observed that the groundwater variability being higher modulated by a combination of large-scale atmospheric circulations rather than each individual index. The decadal and interdecadal oscillation modes constitute the dominant modes in Iranian aquifers. Findings also mark the unsaturated zone contribution in damping and lagging of the climate variability modes, particularly for the higher frequency indices of ENSO and NAO where the groundwater variability is observed to be more correlated with lower frequent climate circulations such as PDO and AMO, rather than ENSO and NAO. Finally, it is found that the data length can significantly affect the teleconnections if the time series are not contemporaneous and only one value of coherence/correlation is computed for each particular series instead of separate computations for different frequency bands and different time spans.


2005 ◽  
Vol 18 (12) ◽  
pp. 1881-1901 ◽  
Author(s):  
Pat J-F. Yeh ◽  
Elfatih A. B. Eltahir

Abstract A lumped unconfined aquifer model has been developed and interactively coupled to a land surface scheme in a companion paper. Here, the issue of the representation of subgrid variability of water table depths (WTDs) is addressed. A statistical–dynamical (SD) approach is used to account for the effects of the unresolved subgrid variability of WTD in the grid-scale groundwater runoff. The dynamic probability distribution function (PDF) of WTD is specified as a two-parameter gamma distribution based on observations. The grid-scale groundwater rating curve (i.e., aquifer storage–discharge relationship) is derived statistically by integrating a point groundwater runoff model with respect to the PDF of WTD. Next, a mosaic approach is utilized to account for the effects of subgrid variability of WTD in the grid-scale groundwater recharge. A grid cell is categorized into different subgrids based on the PDF of WTD. The grid-scale hydrologic fluxes are computed by averaging all of the subgrid fluxes weighted by their fractions. This new methodology combines the strengths of the SD approach and the mosaic approach. The results of model testing in Illinois from 1984 to 1994 indicate that the simulated hydrologic variables (soil saturation and WTD) and fluxes (evaporation, runoff, and groundwater recharge) agree well with the observations. Because of the paucity of the large-scale observations on WTD, the development of a practical parameter estimation procedure is indispensable before the global implementation of the developed scheme of water table dynamics in climate models.


Author(s):  
James K. Adamson ◽  
G. Thomas LaVanchy ◽  
Brandon Stone ◽  
James A. Clark ◽  
Stuart J. Dykstra ◽  
...  

AbstractThere are sparse hydrogeological data and insufficient hydrogeological knowledge in many areas of the world reliant on groundwater. Nicaragua’s Pacific coast is one such region that is also experiencing water scarcity resulting from increasing demand on groundwater resources and climate change. The primary source of water in the region is the aquifer system associated with the Brito Formation, which is a marine sedimentary stratum of mostly sandstone that blankets 75 km of coastline in southwest Nicaragua. This study focused on the Tola municipality with the objective to advance a conceptual understanding of the hydrogeology and to support sustainable water development. Results demonstrate a heterogeneous aquifer system with regional flow characteristics and other factors that influence groundwater availability and water quality. Primary porosity is low, and secondary porosity is the primary mechanism of aquifer storage and is influenced by geological structure and diagenesis processes. Groundwater recharge is spatially and temporally heterogeneous and direct recharge is low. Infiltration of streamflow and runoff, especially early in the rainy season, is thought to be a large component of groundwater recharge. Climate, flow and recharge dynamics, and low storage capacity make the Brito Formation a sensitive resource and vulnerable to drought, increased abstraction, and climate change. This assessment provides data and insights useful for informing future studies and investments within the region and may be applicable in other Central American and Caribbean nations with coastal sandstone aquifers.


2017 ◽  
Vol 114 (11) ◽  
pp. 2842-2847 ◽  
Author(s):  
Andreas Hartmann ◽  
Tom Gleeson ◽  
Yoshihide Wada ◽  
Thorsten Wagener

Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover ∼25% of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit “karstification,” which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1902
Author(s):  
Martin Oberascher ◽  
Aun Dastgir ◽  
Jiada Li ◽  
Sina Hesarkazzazi ◽  
Mohsen Hajibabaei ◽  
...  

Smart rainwater harvesting (RWH) systems can automatically release stormwater prior to rainfall events to increase detention capacity on a household level. However, impacts and benefits of a widespread implementation of these systems are often unknown. This works aims to investigate the effect of a large-scale implementation of smart RWH systems on urban resilience by hypothetically retrofitting an Alpine municipality with smart rain barrels. Smart RWH systems represent dynamic systems, and therefore, the interaction between the coupled systems RWH units, an urban drainage network (UDN) and digital infrastructure is critical for evaluating resilience against system failures. In particular, digital parameters (e.g., accuracy of weather forecasts, or reliability of data communication) can differ from an ideal performance. Therefore, different digital parameters are varied to determine the range of uncertainties associated with smart RWH systems. As the results demonstrate, smart RWH systems can further increase integrated system resilience but require a coordinated integration into the overall system. Additionally, sufficient consideration of digital uncertainties is of great importance for smart water systems, as uncertainties can reduce/eliminate gained performance improvements. Moreover, a long-term simulation should be applied to investigate resilience with digital applications to reduce dependence on boundary conditions and rainfall patterns.


Sign in / Sign up

Export Citation Format

Share Document