scholarly journals How a Star’s Death Can Reveal a Black Hole

2022 ◽  
Vol 9 ◽  
Author(s):  
Iair Arcavi

Studying invisible objects in space that are hundreds of millions of light years away may sound impossible. But, in recent years, astronomers have developed a new way to investigate a type of invisible and distant objects—super-massive black holes. Black holes are the most densely packed objects in the Universe. When stars get close to super-massive black holes they can be torn apart, which produces a relatively brief but informative flash of light. These star-destroying events can help us to discover the locations of the most massive black holes in the Universe, but only if we know how to find and interpret them. In this article, we will discuss different ways we can “see” black holes, and particularly what we do and do not yet understand about stars getting “tidally disrupted” by them. Light YearThe distance light travels in a year, which is 5,878,625,370,000 miles.

2018 ◽  
Vol 27 (06) ◽  
pp. 1841003
Author(s):  
K. M. Belotsky ◽  
A. V. Grobov ◽  
S. G. Rubin

It is shown that the creation of primordial massive black holes is accompanied by a local heating of the matter. The developed mechanism is based on the interaction of the Higgs field and a scalar field responsible for black hole formation. We also consider dynamical behavior of parameters such as a scale and chemical composition of such heating regions.


Author(s):  
Amy E. Reines ◽  
Andrea Comastri

AbstractObservational constraints on the birth and early evolution of massive black holes come from two extreme regimes. At high redshift, quasars signal the rapid growth of billion-solar-mass black holes and indicate that these objects began remarkably heavy and/or accreted mass at rates above the Eddington limit. At low redshift, the smallest nuclear black holes known are found in dwarf galaxies and provide the most concrete limits on the mass of black hole seeds. Here, we review current observational work in these fields that together are critical for our understanding of the origin of massive black holes in the Universe.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


1998 ◽  
Vol 11 (1) ◽  
pp. 28-41
Author(s):  
I.D. Novikov

Some 30 years ago very few scientists thought that black holes may really exist. Attention focussed on the black hole hypothesis after neutron stars had been discovered. It was rather surprising that astrophysicists immediately ‘welcomed’ black holes. They found their place not only in the remnants of supernova explosions but also in the nuclei of galaxies and quasars.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
David Garofalo

While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 145 ◽  
Author(s):  
David Garofalo ◽  
Damian J. Christian ◽  
Andrew M. Jones

By exploring more than sixty thousand quasars from the Sloan Digital Sky Survey Data Release 5, Steinhardt & Elvis discovered a sub-Eddington boundary and a redshift-dependent drop-off at higher black hole mass, possible clues to the growth history of massive black holes. Our contribution to this special issue of Universe amounts to an application of a model for black hole accretion and jet formation to these observations. For illustrative purposes, we include ~100,000 data points from the Sloan Digital Sky Survey Data Release 7 where the sub-Eddington boundary is also visible and propose a theoretical picture that explains these features. By appealing to thin disk theory and both the lower accretion efficiency and the time evolution of jetted quasars compared to non-jetted quasars in our “gap paradigm”, we explain two features of the sub-Eddington boundary. First, we show that a drop-off on the quasar mass-luminosity plane for larger black hole mass occurs at all redshifts. But the fraction of jetted quasars is directly related to the merger function in this paradigm, which means the jetted quasar fraction drops with decrease in redshift, which allows us to explain a second feature of the sub-Eddington boundary, namely a redshift dependence of the slope of the quasar mass–luminosity boundary at high black hole mass stemming from a change in radiative efficiency with time. We are able to reproduce the mass dependence of, as well as the oscillating behavior in, the slope of the sub-Eddington boundary as a function of time. The basic physical idea involves retrograde accretion occurring only for a subset of the more massive black holes, which implies that most spinning black holes in our model are prograde accretors. In short, this paper amounts to a qualitative overview of how a sub-Eddington boundary naturally emerges in the gap paradigm.


1996 ◽  
Vol 462 ◽  
pp. 104 ◽  
Author(s):  
Shin Sasaki ◽  
Masayuki Umemura

Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 97-100 ◽  
Author(s):  
H. Umehata ◽  
M. Fumagalli ◽  
I. Smail ◽  
Y. Matsuda ◽  
A. M. Swinbank ◽  
...  

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.


Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 103-113 ◽  
Author(s):  
Scott Tremaine

Quasars emit more energy than any other object in the universe, yet are not much bigger than our solar system. Quasars are powered by giant black holes of up to ten billion (1010) times the mass of the sun. Their enormous luminosities are the result of frictional forces acting upon matter as it spirals toward the black hole, heating the gas until it glows. We also believe that black holes of one million to ten billion solar masses – dead quasars – are present at the centers of most galaxies, including our own. The mass of the central black hole appears to be closely related to other properties of its host galaxy, such as the total mass in stars, but the origin of this relation and the role that black holes play in the formation of galaxies are still mysteries.


Sign in / Sign up

Export Citation Format

Share Document