scholarly journals Thionitroxyl Radical (H2NS) Isomers: Structures, Vibrational Spectroscopy, Electronic States and Photochemistry

Author(s):  
Mahmoud Jarraya ◽  
Saida Ben Yaghlane ◽  
Raimund Feifel ◽  
Roberto Linguerri ◽  
Majdi Hochlaf

The thionitroxyl radical (H2NS) isomers are characterized using advanced ab initio methodologies. Computations are done using standard and explicitly correlated coupled cluster, CASSCF and MRCI approaches in conjunction with large basis sets, extrapolated to the complete basis set (CBS) limit. The lowest electronic states of different isomers are mapped along the stretching coordinates, thereby confirming the existence of the four already known ground state structures, namely H2NS, H2SN, cis-HNSH and trans-HNSH. Also, it is shown that only the lowest electronic excited states are stable, whereas the upper electronic states may undergo unimolecular decomposition processes forming H + HNS/HSN or the HN + SH or N + H2S or S + NH2 fragments. These data allow an assignment of the deep blue glow observed after reactions between “active nitrogen” and H2S at the beginning of the XXth century. For stable species, a set of accurate structural and spectroscopic parameters are provided. Since small nitrogen-sulfur molecular species are of astrophysical relevance, this work may help for identifying the thionitroxyl radical isomers in astrophysical media and in the laboratory.

2018 ◽  
Author(s):  
Danilo Carmona ◽  
David Contreras ◽  
Oscar A. Douglas-Gallardo ◽  
Stefan Vogt-Geisse ◽  
Pablo Jaque ◽  
...  

The Fenton reaction plays a central role in many chemical and biological processes and has various applications as e.g. water remediation. The reaction consists of the iron-catalyzed homolytic cleavage of the oxygen-oxygen bond in the hydrogen peroxide molecule and the reduction of the hydroxyl radical. Here, we study these two elementary steps with high-level ab-initio calculations at the complete basis set limit and address the performance of different DFT methods following a specific classification based on the Jacob´s ladder in combination with various Pople's basis sets. Ab-initio calculations at the complete basis set limit are in agreement to experimental reference data and identified a significant contribution of the electron correlation energy to the bond dissociation energy (BDE) of the oxygen-oxygen bond in hydrogen peroxide and the electron affinity (EA) of the hydroxyl radical. The studied DFT methods were able to reproduce the ab-initio reference values, although no functional was particularly better for both reactions. The inclusion of HF exchange in the DFT functionals lead in most cases to larger deviations, which might be related to the poor description of the two reactions by the HF method. Considering the computational cost, DFT methods provide better BDE and EA values than HF and post--HF methods with an almost MP2 or CCSD level of accuracy. However, no systematic general prediction of the error based on the employed functional could be established and no systematic improvement with increasing the size in the Pople's basis set was found, although for BDE values certain systematic basis set dependence was observed. Moreover, the quality of the hydrogen peroxide, hydroxyl radical and hydroxyl anion structures obtained from these functionals was compared to experimental reference data. In general, bond lengths were well reproduced and the error in the angles were between one and two degrees with some systematic trend with the basis sets. From our results we conclude that DFT methods present a computationally less expensive alternative to describe the two elementary steps of the Fenton reaction. However, choice of approximated functionals and basis sets must be carefully done and the provided benchmark allows a systematic validation of the electronic structure method to be employed


2018 ◽  
Vol 71 (4) ◽  
pp. 238 ◽  
Author(s):  
Manoj K. Kesharwani ◽  
Amir Karton ◽  
Nitai Sylvetsky ◽  
Jan M. L. Martin

The S66 benchmark for non-covalent interactions has been re-evaluated using explicitly correlated methods with basis sets near the one-particle basis set limit. It is found that post-MP2 ‘high-level corrections’ are treated adequately well using a combination of CCSD(F12*) with (aug-)cc-pVTZ-F12 basis sets on the one hand, and (T) extrapolated from conventional CCSD(T)/heavy-aug-cc-pV{D,T}Z on the other hand. Implications for earlier benchmarks on the larger S66×8 problem set in particular, and for accurate calculations on non-covalent interactions in general, are discussed. At a slight cost in accuracy, (T) can be considerably accelerated by using sano-V{D,T}Z+ basis sets, whereas half-counterpoise CCSD(F12*)(T)/cc-pVDZ-F12 offers the best compromise between accuracy and computational cost.


2011 ◽  
Vol 76 (4) ◽  
pp. 327-341 ◽  
Author(s):  
Vladimír Špirko ◽  
Xiangzhu Li ◽  
Josef Paldus

Recently generated ground state potential energy curves (PECs) for the nitrogen molecule, as obtained with the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR-CCSD), and its version corrected for the secondary triples RMR-CCSD(T), using cc-pVXZ basis sets with X = D, T, and Q, as well as the extrapolated complete basis set (cbs) limit (X. Li and J. Paldus: J. Chem. Phys. 2008, 129, 054104), are compared with both the highly accurate theoretical configuration interaction PEC of Gdanitz (Chem. Phys. Lett. 1998, 283, 253) and analytic PECs obtained by fitting an extensive set of experimental data (R. J. Le Roy et al.: J. Chem. Phys. 2006, 125, 164310). These results are analyzed using a morphing procedure based on the reduced potential curve (RPC) method of Jenč. It is found that an RPC fit of both theoretical potentials can be achieved with only a few parameters. The RMR PECs are found to provide an excellent description of experimentally available vibrational levels, but significantly deviate from those of Gdanitz’s PEC for highly stretched geometries, yet still do provide a qualitatively correct PECs that lie within the region delimited by Le Roy’s analytical PECs.


RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 13635-13642 ◽  
Author(s):  
Lu Guo ◽  
Hongyu Ma ◽  
Lulu Zhang ◽  
Yuzhi Song ◽  
Yongqing Li

A full three-dimensional global potential energy surface is reported for the ground state of CH2+ by fitting accurate multireference configuration interaction energies calculated using aug-cc-pVQZ and aug-cc-pV5Z basis sets with extrapolation of the electron correlation energy to the complete basis set limit.


2018 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized; ; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40x10 data and the present revision.</p>


2018 ◽  
Author(s):  
Danilo Carmona ◽  
David Contreras ◽  
Oscar A. Douglas-Gallardo ◽  
Stefan Vogt-Geisse ◽  
Pablo Jaque ◽  
...  

The Fenton reaction plays a central role in many chemical and biological processes and has various applications as e.g. water remediation. The reaction consists of the iron-catalyzed homolytic cleavage of the oxygen-oxygen bond in the hydrogen peroxide molecule and the reduction of the hydroxyl radical. Here, we study these two elementary steps with high-level ab-initio calculations at the complete basis set limit and address the performance of different DFT methods following a specific classification based on the Jacob´s ladder in combination with various Pople's basis sets. Ab-initio calculations at the complete basis set limit are in agreement to experimental reference data and identified a significant contribution of the electron correlation energy to the bond dissociation energy (BDE) of the oxygen-oxygen bond in hydrogen peroxide and the electron affinity (EA) of the hydroxyl radical. The studied DFT methods were able to reproduce the ab-initio reference values, although no functional was particularly better for both reactions. The inclusion of HF exchange in the DFT functionals lead in most cases to larger deviations, which might be related to the poor description of the two reactions by the HF method. Considering the computational cost, DFT methods provide better BDE and EA values than HF and post--HF methods with an almost MP2 or CCSD level of accuracy. However, no systematic general prediction of the error based on the employed functional could be established and no systematic improvement with increasing the size in the Pople's basis set was found, although for BDE values certain systematic basis set dependence was observed. Moreover, the quality of the hydrogen peroxide, hydroxyl radical and hydroxyl anion structures obtained from these functionals was compared to experimental reference data. In general, bond lengths were well reproduced and the error in the angles were between one and two degrees with some systematic trend with the basis sets. From our results we conclude that DFT methods present a computationally less expensive alternative to describe the two elementary steps of the Fenton reaction. However, choice of approximated functionals and basis sets must be carefully done and the provided benchmark allows a systematic validation of the electronic structure method to be employed


2019 ◽  
Vol 25 (10) ◽  
Author(s):  
Teobald Kupka ◽  
Aneta Buczek ◽  
Małgorzata A. Broda ◽  
Adrianna Mnich ◽  
Tapas Kar

Abstract Detailed study of Jensen’s polarization-consistent vs. Dunning’s correlation-consistent basis set families performance on the extrapolation of raw and counterpoise-corrected interaction energies of water dimer using coupled cluster with single, double, and perturbative correction for connected triple excitations (CCSD(T)) in the complete basis set (CBS) limit are reported. Both 3-parameter exponential and 2-parameter inverse-power fits vs. the cardinal number of basis set, as well as the number of basis functions were analyzed and compared with one of the most extensive CCSD(T) results reported recently. The obtained results for both Jensen- and Dunning-type basis sets underestimate raw interaction energy by less than 0.136 kcal/mol with respect to the reference value of − 4.98065 kcal/mol. The use of counterpoise correction further improves (closer to the reference value) interaction energy. Asymptotic convergence of 3-parameter fitted interaction energy with respect to both cardinal number of basis set and the number of basis functions are closer to the reference value at the CBS limit than other fitting approaches considered here. Separate fits of Hartree-Fock and correlation interaction energy with 3-parameter formula additionally improved the results, and the smallest CBS deviation from the reference value is about 0.001 kcal/mol (underestimated) for CCSD(T)/aug-cc-pVXZ calculations. However, Jensen’s basis set underestimates such value to 0.012 kcal/mol. No improvement was observed for using the number of basis functions instead of cardinal number for fitting.


2016 ◽  
Vol 18 (31) ◽  
pp. 21145-21161 ◽  
Author(s):  
Stig Rune Jensen ◽  
Tor Flå ◽  
Dan Jonsson ◽  
Rune Sørland Monstad ◽  
Kenneth Ruud ◽  
...  

Multiwavelets are emerging as an attractive alternative to traditional basis sets such as Gaussian-type orbitals and plane waves.


Sign in / Sign up

Export Citation Format

Share Document