scholarly journals Altered Functional Mitochondrial Protein Levels in Plasma Neuron-Derived Extracellular Vesicles of Patients With Gadolinium Deposition

2022 ◽  
Vol 3 ◽  
Author(s):  
Edward J. Goetzl ◽  
Holden T. Maecker ◽  
Yael Rosenberg-Hasson ◽  
Lorrin M. Koran

The retention of the heavy metal, gadolinium, after a Gadolinium-Based Contrast Agent-assisted MRI may lead to a symptom cluster termed Gadolinium Deposition Disease. Little is known of the disorder’s underlying pathophysiology, but a recent study reported abnormally elevated serum levels of pro-inflammatory cytokines compared to normal controls. As a calcium channel blocker in cellular plasma and mitochondrial membranes, gadolinium also interferes with mitochondrial function. We applied to sera from nine Gadolinium Deposition Disease and two Gadolinium Storage Condition patients newly developed methods allowing isolation of plasma neuron-derived extracellular vesicles that contain reproducibly quantifiable levels of mitochondrial proteins of all major classes. Patients’ levels of five mitochondrial functional proteins were statistically significantly lower and of two significantly higher than the levels in normal controls. The patterns of differences between study patients and controls for mitochondrial dynamics and mitochondrial proteins encompassing neuronal energy generation, metabolic regulation, ion fluxes, and survival differed from those seen for patients with first episode psychosis and those with Major Depressive Disorder compared to their controls. These findings suggest that mitochondrial dysfunction due to retained gadolinium may play a role in causing Gadolinium Deposition Disease. Larger samples of both GDD and GSC patients are needed to allow not only testing the repeatability of our findings, but also investigation of relationships of specific mitochondrial protein deficiencies or excesses and concurrent cytokine, genetic, or other factors to GDD’s neurological and cognitive symptoms. Studies of neuronal mitochondrial proteins as diagnostic markers or indicators of treatment effectiveness are also warranted.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kiran Todkar ◽  
Lilia Chikhi ◽  
Véronique Desjardins ◽  
Firas El-Mortada ◽  
Geneviève Pépin ◽  
...  

AbstractMost cells constitutively secrete mitochondrial DNA and proteins in extracellular vesicles (EVs). While EVs are small vesicles that transfer material between cells, Mitochondria-Derived Vesicles (MDVs) carry material specifically between mitochondria and other organelles. Mitochondrial content can enhance inflammation under pro-inflammatory conditions, though its role in the absence of inflammation remains elusive. Here, we demonstrate that cells actively prevent the packaging of pro-inflammatory, oxidized mitochondrial proteins that would act as damage-associated molecular patterns (DAMPs) into EVs. Importantly, we find that the distinction between material to be included into EVs and damaged mitochondrial content to be excluded is dependent on selective targeting to one of two distinct MDV pathways. We show that Optic Atrophy 1 (OPA1) and sorting nexin 9 (Snx9)-dependent MDVs are required to target mitochondrial proteins to EVs, while the Parkinson’s disease-related protein Parkin blocks this process by directing damaged mitochondrial content to lysosomes. Our results provide insight into the interplay between mitochondrial quality control mechanisms and mitochondria-driven immune responses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer K. Dowling ◽  
Remsha Afzal ◽  
Linden J. Gearing ◽  
Mariana P. Cervantes-Silva ◽  
Stephanie Annett ◽  
...  

AbstractMitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2−/− mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


2020 ◽  
Vol 17 (4) ◽  
pp. 546-550 ◽  
Author(s):  
H. Benjamin Harvey ◽  
Vrushab Gowda ◽  
Glen Cheng

Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


Author(s):  
Jessica N. Peoples ◽  
Nasab Ghazal ◽  
Duc M. Duong ◽  
Katherine R. Hardin ◽  
Janet R. Manning ◽  
...  

Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


2016 ◽  
Vol 27 (2) ◽  
pp. 105-117 ◽  
Author(s):  
Timothy Wai ◽  
Thomas Langer

2020 ◽  
Author(s):  
Zuriñe Antón ◽  
Grace Mullally ◽  
Holly Ford ◽  
Marc W. van der Kamp ◽  
Mark D. Szczelkun ◽  
...  

ABSTRACTCurrent methodologies for targeting the mitochondrial genome for basic research and/or therapeutic strategy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. The development of a functional molecular toolbox for CRISPR-mediated mitochondrial genome editing is therefore desirable, as this could enable precise targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes; however, published reports of “MitoCRISPR” systems have, to date, lacked reproducibility and independent corroboration. Here, we have explored the requirements for a functional MitoCRISPR system in human cells by engineering several versions of CRISPR nucleases, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of gRNA modifications that reportedly induce mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and influences on mitochondrial dynamics/function of different CRISPR nucleases, with Lachnospiraceae bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Finally, we present evidence linking mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary if MitoCRISPR is to be realised.


2020 ◽  
Vol 14 (1) ◽  
pp. 25-32
Author(s):  
Adewuyi Hassan Abdulsalam ◽  
◽  
Muhammad L. Hadiza ◽  
Onukogu Stella Chiamaka ◽  
Ibrahim Jonathan ◽  
...  

Background: Leptadenia hastata (L. Hastata) is a plant used for various diseases in Nigeria. This study evaluated the protective effects of L. hastate on the haematological and biochemical alterations in adrenaline-induced hypertensive rats. Methods: Twenty-five rats were divided equally into five groups (A-E). Groups A-D were given 0.5 mg/kg adrenaline, groups A and B were treated with 100 and 200 mg/kg the extract of L. Hastata, respectively, while groups C and D were treated with 5 mg/kg amlodipine (standard control) and normal saline (untreated control), respectively. Group E were given distilled water (normal controls). The adrenaline was injected intraperitoneally while the extract was given orally once daily for seven days. Results: Treatment with 100 and 200 mg/kg of the extract significantly reduced the elevated serum albumin, ALP, ALT, AST, chloride, sodium and creatinine, cholesterol and LDL concentrations compared with the untreated hypertensive rats. The bicarbonate level, WBC and RBC counts, mean cell hemoglobin and packed cell value were higher in rats treated with the extract compared with the untreated hypertensive rats. The mean cell value, HDL, triglyceride, urea, potassium, total and direct bilirubin concentrations in experimental groups were not significantly different from those in the controls (P<0.05). Conclusion: Our results suggest that treatment of the hypertensive rats with the extract of L. Hastata protects against renal, hepatic and cardiac damages, thus it could be considered as a natural anti-hypertensive agent. Further studies are required to identify the bioactive constituents and the mechanism(s) of action.


Sign in / Sign up

Export Citation Format

Share Document