scholarly journals Isolation and Genetic Characterization of Canine Parvovirus in a Malayan Tiger

2021 ◽  
Vol 8 ◽  
Author(s):  
Ahmad Nadzri Nur-Farahiyah ◽  
Kiven Kumar ◽  
Abd Rahaman Yasmin ◽  
Abdul Rahman Omar ◽  
Siti Nazrina Camalxaman

Naïve Felidae in the wild may harbor infectious viruses of importance due to cross-species transmission between the domesticated animals or human–wildlife contact. However, limited information is available on virus shedding or viremia in the captive wild felids, especially in Malaysia. Four infectious viruses of cat, feline herpesvirus (FHV), feline calicivirus (FCV), canine distemper virus (CDV), and canine parvovirus (CPV), were screened in leopards, feral cats, and tigers in Malaysia based on virus isolation in Crandell-Rees feline kidney (CRFK) cells, PCR/RT-PCR, and whole-genome sequencing analysis of the positive isolate. From a total of 36 sera collected, 11 samples showed three consecutive cytopathic effects in the cell culture and were subjected to PCR using specific primers for FHV, FCV, CDV, and CPV. Only one sample from a Malayan tiger was detected positive for CPV. The entire viral genome of CPV (UPM-CPV15/P. tigris jacksoni; GenBank Accession number MW380384) was amplified using the Sanger sequencing approach. Genome sequencing of the isolate revealed 99.13, 98.65, and 98.40% close similarity to CPV-31, CPV-d Cornell #320, and CPV-15 strains, respectively, and classified as CPV-2a. Time-scaled Bayesian Maximum Clade Credibility tree for the non-structural (NS) genes of CPV showed a close relationship to the isolates CPV-CN SD6_2014 and KSU7-SD_2004 from China and USA, respectively, while the capsid gene showed the same ancestor as the FPV-BJ04 strain from China. The higher evolution rate of the capsid protein (CP) (VP 1 and VP2) [1.649 × 10−5 (95% HPD: 7.626 × 10−3 to 7.440 × 10−3)] as compared to the NS gene [1.203 × 10−4 (95% HPD: 6.663 × 10−3 to 6.593 × 10−3)] was observed in the CPV from this study, and fairly higher than other parvovirus species from the Protoparvovirus genus. Genome sequencing of the isolated CPV from a Malayan tiger in the present study provides valuable information about the genomic characteristics of captive wild felids, which may add information on the presence of CPV in species other than dogs.

2012 ◽  
Vol 57 (1) ◽  
pp. 436-444 ◽  
Author(s):  
Naoki Ogura ◽  
Yukiyo Toyonaga ◽  
Izuru Ando ◽  
Kunihiro Hirahara ◽  
Tsutomu Shibata ◽  
...  

ABSTRACTJTK-853, a palm site-binding NS5B nonnucleoside polymerase inhibitor, shows antiviral activityin vitroand in hepatitis C virus (HCV)-infected patients. Here, we report the results of genotypic and phenotypic analyses of resistant variants in 24 HCV genotype 1-infected patients who received JTK-853 (800, 1,200, or 1,600 mg twice daily or 1,200 mg three times daily) in a 3-day monotherapy. Viral resistance in NS5B was investigated using HCV RNA isolated from serum specimens from the patients. At the end of treatment (EOT) with JTK-853, the amino acid substitutions M414T (methionine [M] in position 414 at baseline was replaced with threonine [T] at EOT), C445R (cysteine [C] in position 445 at baseline was replaced with arginine [R] at EOT), Y448C/H (tyrosine [Y] in position 448 at baseline was replaced with cysteine [C] or histidine [H] at EOT), and L466F (leucine [L] in position 466 at baseline was replaced with phenylalanine [F] at EOT), which are known to be typical resistant variants of nonnucleoside polymerase inhibitors, were observed in a clonal sequencing analysis. These substitutions were also selected by a treatment with JTK-853in vitro, and the 50% effective concentration of JTK-853 in the M414T-, C445F-, Y448H-, and L466V-harboring replicons attenuated the susceptibility by 44-, 5-, 6-, and 21-fold, respectively, compared with that in the wild-type replicon (Con1). These findings suggest that amino acid substitutions of M414T, C445R, Y448C/H, and L466F are thought to be viral resistance mutations in HCV-infected patients receiving JTK-853 in a 3-day monotherapy.


Author(s):  
Eliana Ottati Nogueira ◽  
Antonio J Piantino Ferreira ◽  
Rodrigo Martins Soares ◽  
Edison Luiz Durigon ◽  
Simaia Lazzarin ◽  
...  

2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Fauziah Abu Bakar ◽  
Pavitra Paramalingam ◽  
Kamariah Hasan

Carica papaya is a well-liked and economically important fruit with outstanding nutritional and medicinal values. Its susceptibility to abiotic stress which affects the growth and harvest, causes significant yield loss to farmers. In recent years, significant progress has been made to understand the genes that play critical roles in abiotic stress response, especially some transcription factor (TF) encoding genes. Among all TFs, WRKY TF gene family is one of the best-studied TFs involved in various stress responses. To date, only limited information on functionally characterised WRKY TFs is available for C. papaya. The aim of this study was to produce a recombinant construct harbouring WRKY gene in pGEM®-T Easy cloning vector. The presence of a DNA band of the expected size of 465 bp on agarose gel electrophoresis indicated that WRKY gene was successfully amplified from all treated samples. DNA sequencing analysis revealed that the amplified sequence isolated from the treated samples were closely related to Carica papaya species with 97% similarity. Following transformation, 4 out of 5 colonies that were randomly selected showed the WRKY gene had been successfully inserted into pGEM®-T Easy vector and transformed into E. coli. In future, the WRKY gene from pGEMT-WRKY recombinant construct will be cloned into the plant expression vector pCAMBIA 1304 prior to transformation in the plant. The success of demonstrating the WRKY gene towards the response in abiotic stress will enable us to produce stress tolerant transgenic crops under unfavourable conditions via genetic engineering for sustained growth.


2018 ◽  
Author(s):  
Allison A. Regier ◽  
Yossi Farjoun ◽  
David Larson ◽  
Olga Krasheninina ◽  
Hyun Min Kang ◽  
...  

AbstractHundreds of thousands of human whole genome sequencing (WGS) datasets will be generated over the next few years to interrogate a broad range of traits, across diverse populations. These data are more valuable in aggregate: joint analysis of genomes from many sources increases sample size and statistical power for trait mapping, and will enable studies of genome biology, population genetics and genome function at unprecedented scale. A central challenge for joint analysis is that different WGS data processing and analysis pipelines cause substantial batch effects in combined datasets, necessitating computationally expensive reprocessing and harmonization prior to variant calling. This approach is no longer tenable given the scale of current studies and data volumes. Here, in a collaboration across multiple genome centers and NIH programs, we define WGS data processing standards that allow different groups to produce “functionally equivalent” (FE) results suitable for joint variant calling with minimal batch effects. Our approach promotes broad harmonization of upstream data processing steps, while allowing for diverse variant callers. Importantly, it allows each group to continue innovating on data processing pipelines, as long as results remain compatible. We present initial FE pipelines developed at five genome centers and show that they yield similar variant calling results – including single nucleotide (SNV), insertion/deletion (indel) and structural variation (SV) – and produce significantly less variability than sequencing replicates. Residual inter-pipeline variability is concentrated at low quality sites and repetitive genomic regions prone to stochastic effects. This work alleviates a key technical bottleneck for genome aggregation and helps lay the foundation for broad data sharing and community-wide “big-data” human genetics studies.


Sign in / Sign up

Export Citation Format

Share Document