scholarly journals Biomechanical Comparison of Tibial Plateau Leveling Osteotomy Performed With a Novel Titanium Alloy Locking Plate Construct vs. an Established Stainless-Steel Locking Plate Construct

2021 ◽  
Vol 8 ◽  
Author(s):  
Seth Bleakley ◽  
Ross Palmer ◽  
Nate Miller ◽  
Kirk McGilvray ◽  
Slobodan Tepic

A novel canine tibial plateau leveling osteotomy (TPLO) fixation device was recently developed with design features such as titanium alloy (TA) material, distal monocortical screw fixation, and a point contact undersurface specifically targeted to reduce surgical site infection rates by ensuring tissue perfusion under the plate. The strength of the novel TPLO construct was compared with that of a predicate stainless steel (SS) locking plate construct with bicortical screws in 16 paired cadaveric canine limbs. The mean loads to failure were 716.71 ± 109.50 N (range 455.69–839.69 N) and 629.50 ± 176.83 N (range 272.58–856.18 N) in the TA and SS groups, respectively. The average ratio of the loads to failure of the paired specimens was 1.18 (p = 0.031). No failure of the TA constructs involved the distal fixation with monocortical screws. Substantial mechanical equivalence of this novel TA monocortical/bicortical fixation construct to an established SS bicortical screw fixation construct is demonstrated. Clinical investigation of potential merits of this novel TA, monocortical/bicortical locking screw/plate system is now warranted.

2020 ◽  
Vol 34 (11) ◽  
pp. e401-e406
Author(s):  
Thomas H. Carter ◽  
Robert Wallace ◽  
Samuel A. Mackenzie ◽  
William M. Oliver ◽  
Andrew D. Duckworth ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. 322-328 ◽  
Author(s):  
Ashleen R. Knutsen ◽  
John F. Fleming ◽  
Edward Ebramzadeh ◽  
Nathan C. Ho ◽  
Tibor Warganich ◽  
...  

Common surgical treatment of first tarsal-metatarsal arthritis is by first metatarsocuneiform joint arthrodesis. While crossed-screw and locking plate fixation are the most widely used methods, a novel construct was designed to alleviate soft tissue irritation while still providing stable fixation. Using anatomic first metatarsal and medial cuneiform composites, we compared 3 arthrodesis implants (crossed-screw, dorsal locking plate, and IO Fix) under 2 cyclic bending loading scenarios (cantilever and 4-point bending). Additionally, the optimal orientation (plantar-dorsal or dorsal-plantar) of the IO Fix construct was determined. Failure load, diastasis, joint space angle, and axial and angular stiffness were determined. Both crossed-screw fixation and the IO Fix constructs experienced significantly higher failure loads than the dorsal locking plate during both loading scenarios. Additionally, they had lower plantar diastasis and joint space angle at failure than the plate. Moreover, the plantar-dorsal IO Fix construct was significantly stiffer than the crossed-screw during cantilever bending. Finally, the plantar-dorsal orientation of the IO Fix device had higher failure load and lower diastasis and angle at failure than in the dorsal-plantar orientation. The results suggest that the IO Fix system can reduce motion at the interfragmentary site and ensure compression for healing comparable to that of the crossed-screw fixation. Levels of Evidence: Level V: Bench testing


Sign in / Sign up

Export Citation Format

Share Document