scholarly journals A Domain Adaptive Person Re-Identification Based on Dual Attention Mechanism and Camstyle Transfer

Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 361
Author(s):  
Chengyan Zhong ◽  
Guanqiu Qi ◽  
Neal Mazur ◽  
Sarbani Banerjee ◽  
Devanshi Malaviya ◽  
...  

Due to the variation in the image capturing process, the difference between source and target sets causes a challenge in unsupervised domain adaptation (UDA) on person re-identification (re-ID). Given a labeled source training set and an unlabeled target training set, this paper focuses on improving the generalization ability of the re-ID model on the target testing set. The proposed method enforces two properties at the same time: (1) camera invariance is achieved through the positive learning formed by unlabeled target images and their camera style transfer counterparts; and (2) the robustness of the backbone network feature extraction is improved, and the accuracy of feature extraction is enhanced by adding a position-channel dual attention mechanism. The proposed network model uses a classic dual-stream network. Comparative experimental results on three public benchmarks prove the superiority of the proposed method.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Feng-Ping An ◽  
Jun-e Liu ◽  
Lei Bai

Pedestrian reidentification is a key technology in large-scale distributed camera systems. It can quickly and efficiently detect and track target people in large-scale distributed surveillance networks. The existing traditional pedestrian reidentification methods have problems such as low recognition accuracy, low calculation efficiency, and weak adaptive ability. Pedestrian reidentification algorithms based on deep learning have been widely used in the field of pedestrian reidentification due to their strong adaptive ability and high recognition accuracy. However, the pedestrian recognition method based on deep learning has the following problems: first, during the learning process of the deep learning model, the initial value of the convolution kernel is usually randomly assigned, which makes the model learning process easily fall into a local optimum. The second is that the model parameter learning method based on the gradient descent method exhibits gradient dispersion. The third is that the information transfer of pedestrian reidentification sequence images is not considered. In view of these issues, this paper first examines the feature map matrix from the original image through a deconvolution neural network, uses it as a convolution kernel, and then performs layer-by-layer convolution and pooling operations. Then, the second derivative information of the error function is directly obtained without calculating the Hessian matrix, and the momentum coefficient is used to improve the convergence of the backpropagation, thereby suppressing the gradient dispersion phenomenon. At the same time, to solve the problem of information transfer of pedestrian reidentification sequence images, this paper proposes a memory network model based on a multilayer attention mechanism, which uses the network to effectively store image visual information and pedestrian behavior information, respectively. It can solve the problem of information transmission. Based on the above ideas, this paper proposes a pedestrian reidentification algorithm based on deconvolution network feature extraction-multilayer attention mechanism convolutional neural network. Experiments are performed on the related data sets using this algorithm and other major popular human reidentification algorithms. The results show that the pedestrian reidentification method proposed in this paper not only has strong adaptive ability but also has significantly improved average recognition accuracy and rank-1 matching rate compared with other mainstream methods.


2021 ◽  
Vol 13 (14) ◽  
pp. 2686
Author(s):  
Di Wei ◽  
Yuang Du ◽  
Lan Du ◽  
Lu Li

The existing Synthetic Aperture Radar (SAR) image target detection methods based on convolutional neural networks (CNNs) have achieved remarkable performance, but these methods require a large number of target-level labeled training samples to train the network. Moreover, some clutter is very similar to targets in SAR images with complex scenes, making the target detection task very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and attention mechanism is proposed in this paper. Since the image-level label simply marks whether the image contains the target of interest or not, which is easier to be labeled than the target-level label, the proposed method uses a small number of target-level labeled training samples and a large number of image-level labeled training samples to train the network with a semi-supervised learning algorithm. The proposed network consists of a detection branch and a scene recognition branch with a feature extraction module and an attention module shared between these two branches. The feature extraction module can extract the deep features of the input SAR images, and the attention module can guide the network to focus on the target of interest while suppressing the clutter. During the semi-supervised learning process, the target-level labeled training samples will pass through the detection branch, while the image-level labeled training samples will pass through the scene recognition branch. During the test process, considering the help of global scene information in SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse scene recognition determining whether the input SAR image contains the target of interest or not, the fine target detection is performed on the image that may contain the target. The experimental results based on the measured SAR dataset demonstrate that the proposed method can achieve better performance than the existing methods.


Author(s):  
Yin Xu ◽  
Yan Li ◽  
Byeong-Seok Shin

Abstract With recent advances in deep learning research, generative models have achieved great achievements and play an increasingly important role in current industrial applications. At the same time, technologies derived from generative methods are also under a wide discussion with researches, such as style transfer, image synthesis and so on. In this work, we treat generative methods as a possible solution to medical image augmentation. We proposed a context-aware generative framework, which can successfully change the gray scale of CT scans but almost without any semantic loss. By producing target images that with specific style / distribution, we greatly increased the robustness of segmentation model after adding generations into training set. Besides, we improved 2– 4% pixel segmentation accuracy over original U-NET in terms of spine segmentation. Lastly, we compared generations produced by networks when using different feature extractors (Vgg, ResNet and DenseNet) and made a detailed analysis on their performances over style transfer.


2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Author(s):  
Jianqun Zhang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun

To identify rolling bearing faults under variable load conditions, a method named DISA-KNN is proposed in this paper, which is based on the strategy of feature extraction-domain adaptation-classification. To be specific, the time-domain and frequency-domain indicators are used for feature extraction. Discriminative and domain invariant subspace alignment (DISA) is used to minimize the data distributions’ discrepancies between the training data (source domain) and testing data (target domain). K-nearest neighbor (KNN) is applied to identify rolling bearing faults. DISA-KNN’s validation is proved by the experimental signal collected under different load conditions. The identification accuracies obtained by the DISA-KNN method are more than 90% on four datasets, including one dataset with 99.5% accuracy. The strength of the proposed method is further highlighted by comparisons with the other 8 methods. These results reveal that the proposed method is promising for the rolling bearing fault diagnosis in real rotating machinery.


Author(s):  
C Sun ◽  
D Guo ◽  
H Gao ◽  
L Zou ◽  
H Wang

In order to manage the version files and maintain the latest version of the computer-aided design (CAD) files in asynchronous collaborative systems, one method of version merging for CAD files is proposed to resolve the problem based on feature extraction. First of all, the feature information is extracted based on the feature attribute of CAD files and stored in a XML feature file. Then, analyse the feature file, and the feature difference set is obtained by the given algorithm. Finally, the merging result of the difference set and the master files with application programming interface (API) interface functions is achieved, and then the version merging of CAD files is also realized. The application in Catia validated that the proposed method is feasible and valuable in engineering.


Author(s):  
Xiaoqian Yuan ◽  
Chao Chen ◽  
Shan Tian ◽  
Jiandan Zhong

In order to improve the contrast of the difference image and reduce the interference of the speckle noise in the synthetic aperture radar (SAR) image, this paper proposes a SAR image change detection algorithm based on multi-scale feature extraction. In this paper, a kernel matrix with weights is used to extract features of two original images, and then the logarithmic ratio method is used to obtain the difference images of two images, and the change area of the images are extracted. Then, the different sizes of kernel matrix are used to extract the abstract features of different scales of the difference image. This operation can make the difference image have a higher contrast. Finally, the cumulative weighted average is obtained to obtain the final difference image, which can further suppress the speckle noise in the image.


Sign in / Sign up

Export Citation Format

Share Document