scholarly journals Prescribed Performance Control with Sliding-Mode Dynamic Surface for a Glue Pump Motor Based on Extended State Observers

Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 282
Author(s):  
Peiyu Wang ◽  
Liangkuan Zhu ◽  
Chunrui Zhang ◽  
Chengcheng Wang ◽  
Kangming Xiao

The actuator of a particleboard glue-dosing system, the glue pump motor, is affected by external disturbances and unknown uncertainty. In order to achieve accurate glue-flow tracking, in this paper, a glue pump motor compound control method was designed. First, the prescribed performance control method is used to improve the transient behaviors, and the error of the glue flow tracking is guaranteed to converge to a preset range, as a result of the design of an appropriate performance function. Second, two extended state observers were designed to estimate the state vector and the disturbance, in order to improve the robustness of the controlled system. To further strengthen the steady-state performance of the system, the sliding-mode dynamic surface control method was introduced to compensate for uncertainties and disturbances. Finally, a Lyapunov stability analysis was conducted, in order to prove that all of the signals are bounded in a closed-loop system, and the effectiveness and feasibility of the proposed method were verified through numerical simulation.

2020 ◽  
Vol 10 (14) ◽  
pp. 4779 ◽  
Author(s):  
Cheng Lu ◽  
Liang Hua ◽  
Xinsong Zhang ◽  
Huiming Wang ◽  
Yunxiang Guo

This paper investigates one kind of high performance control methods for Micro-Electro-Mechanical-System (MEMS) gyroscopes using adaptive sliding mode control (ASMC) scheme with prescribed performance. Prescribed performance control (PPC) method is combined with conventional ASMC method to provide quantitative analysis of gyroscope tracking error performances in terms of specified tracking error bound and specified error convergence rate. The new derived adaptive prescribed performance sliding mode control (APPSMC) can maintain a satisfactory control performance which guarantees system tracking error, at any time, to be within a predefined error bound and the error convergences faster than the error bound. Besides, adaptive control (AC) technique is integrated with PPC to online tune controller parameters, which will converge to their true values at last. The stability of the control system is proved in the Lyapunov stability framework and simulation results on a Z-axis MEMS gyroscope is conducted to validate the effectiveness of the proposed control approach.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987735
Author(s):  
Xingge Li ◽  
Gang Li ◽  
Yan Zhao ◽  
Xuchao Kang

In this article, aiming at the longitudinal dynamics model of air-breathing hypersonic vehicles, a fuzzy-approximation-based prescribed performance control scheme with input constraints is proposed. First, this article presents a novel prescribed performance function, which does not depend on the sign of initial tracking error. And combining prescribed performance control method with backstepping control, the control scheme can ensure that system can converge at a prescribed rate of convergence, overshoot, and steady-state error. In order to solve the problem that backstepping control method needs to be differentiated multiple times, fuzzy approximators are used to estimate the unknown functions, and norm estimation approach is used to simplify the computation of fuzzy approximator. Aiming at the problem of input saturation of actuator in subsystem of air-breathing hypersonic vehicle, the new auxiliary system is designed to ensure the stability and robustness of air-breathing hypersonic vehicle system under input constraints. Finally, the effectiveness of the proposed control strategy is verified by simulation analysis.


2018 ◽  
Vol 41 (4) ◽  
pp. 975-989 ◽  
Author(s):  
Ziquan Yu ◽  
Youmin Zhang ◽  
Yaohong Qu

In this paper, a prescribed performance-based distributed neural adaptive fault-tolerant cooperative control (FTCC) scheme is proposed for multiple unmanned aerial vehicles (multi-UAVs). A distributed sliding-mode observer (SMO) technique is first utilized to estimate the leader UAV’s reference. Then, by transforming the tracking errors of follower UAVs with respect to the estimated references into a new set, a distributed neural adaptive FTCC protocol is developed based on the combination of dynamic surface control (DSC) and minimal learning parameters of neural network (MLPNN). Moreover, auxiliary dynamic systems are exploited to deal with input saturation. Furthermore, the proposed control scheme can guarantee that all signals of the closed-loop system are bounded, and tracking errors of follower UAVs with respect to the estimated references are confined within the prescribed bounds. Finally, comparative simulation results are presented to illustrate the effectiveness of the proposed distributed neural adaptive FTCC scheme.


Author(s):  
Di Zhou ◽  
Pingping Qu ◽  
Sheng Sun

A sliding-mode guidance (SMG) law is designed to intercept maneuvering targets with impact angle constrained flight trajectories under the assumption of ideal missile autopilot. Furthermore, accounting for the autopilot as second-order dynamics, a new guidance law with terminal impact angle constraint is designed using the dynamic surface control method. Some first-order low-pass filters are introduced into the designing process to avoid the occurrence of high-order derivatives of the line of sight (LOS) angle in the expression of the guidance law such that the guidance law can be implemented in practical applications. The proposed guidance law is effective in compensating for the second-order autopilot lag. Simulation results show that it is able to guide a missile to impact a maneuvering target with a desired angle and a small miss distance.


2021 ◽  
Author(s):  
Lu Liu ◽  
Anxin Yang ◽  
Weixing Chen ◽  
Weidong Zhang

Abstract This paper is concerned with the tracking control of a class of uncertain strict-feedback systems subject to partial loss of actuator effectiveness, in addition to uncertain model dynamics and unknown disturbances. A resilient anti-disturbance dynamic surface control method is proposed to achieve stable tracking regardless of partial actuator faults. First, data-driven adaptive extended state observers are designed based on memory-based identifiers, such that the uncertain model dynamics, external disturbances, and the unknown input gains due to actuator faults can be estimated. Next, a resilient anti-disturbance dynamic surface controller is developed based on recovered information from the data-driven adaptive extended state observers. After that, it is proven that the cascade system formed by the observer and controller is input-to-state stable. Finally, comparative studies are performed to validate the efficacy of the resilient anti-disturbance dynamic surface control method for nonlinear strict-feedback systems subject to partial loss of actuator effectiveness.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 323
Author(s):  
Pu Yang ◽  
Zixin Wang ◽  
Zhiqing Zhang ◽  
Xukai Hu

In this paper, an adaptive sliding mode fault-tolerant control scheme based on prescribed performance control and neural networks is developed for an Unmanned Aerial Vehicle (UAV) quadrotor carrying a load to deal with actuator faults. First, a nonsingular fast terminal sliding mode (NFTSM) control strategy is presented. In virtue of the proposed strategy, fast convergence and high robustness can be guaranteed without stimulating chattering. Secondly, to obtain correct fault magnitudes and compensate the failures actively, a radial basis function neural network-based fault estimation scheme is proposed. By combining the proposed fault estimation strategy and the NFTSM controller, an active fault-tolerant control algorithm is established. Then, the uncertainties caused by load variation are explicitly considered and compensated by the presented adaptive laws. Moreover, by synthesizing the proposed sliding mode control and prescribed performance control (PPC), an output error transformation is defined to deal with state constraints and provide better tracking performance. From the Lyapunov stability analysis, the overall system is proven to be uniformly asymptotically stable. Finally, numerical simulation based on a quadrotor helicopter is carried out to validate the effectiveness and superiority of the proposed algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Weixue Liu ◽  
Jianfang Jiao ◽  
Hamid Reza Karimi ◽  
Jian Jiao

The problem of coordinated control for multiple marine vessels in the presence of external disturbances is considered in this paper. A robust coordinated control algorithm is proposed for multiple marine vessels. The proposed robust coordinated control algorithm is divided into two parts. The first part develops an extended state observer to estimate the disturbances of marine vessels. The second part presents a robust coordinated control algorithm based on the output of the extended state observer. Furthermore, the robust coordinated control algorithm is designed using the dynamic surface control method. In light of the leader-follower strategy, the trajectory for each vessel is defined according to the desired trajectory of the assigned leader and the relative distance with respect to the leader. The effectiveness of the proposed coordination algorithm is demonstrated by the simulation results.


Sign in / Sign up

Export Citation Format

Share Document