scholarly journals EV Charging in Case of Limited Power Resource

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 325
Author(s):  
Manan’Iarivo Louis Rasolonjanahary ◽  
Chris Bingham ◽  
Nigel Schofield ◽  
Masoud Bazargan

In the case of the widespread adoption of electric vehicles (EV), it is well known that their use and charging could affect the network distribution system, with possible repercussions including line overload and transformer saturation. In consequence, during periods of peak energy demand, the number of EVs that can be simultaneously charged, or their individual power consumption, should be controlled, particularly if the production of energy relies solely on renewable sources. This requires the adoption of adaptive and/or intelligent charging strategies. This paper focuses on public charging stations and proposes methods of attribution of charging priority based on the level of charge required and premiums. The proposed solution is based on model predictive control (MPC), which maintains total current/power within limits (which can change with time) and imparts real-time priority charge scheduling of multiple charging bays. The priority is defined in the diagonal entry of the quadratic form matrix of the cost function. In all simulations, the order of EV charging operation matched the attributed priorities for the cases of ten cars within the available power. If two or more EVs possess similar or equal diagonal entry values, then the car with the smallest battery capacitance starts to charge its battery first. The method is also shown to readily allow participation in Demand Side Response (DSR) schemes by reducing the current temporarily during the charging operation.

Author(s):  
Jayababu Badugu ◽  
Y.P. Obulesu ◽  
Ch. Sai Babu

Electric Vehicles (EVs) are becoming a viable transportation option because they are environmentally friendly and provide solutions to high oil prices. This paper investigates the impacts of electric vehicles on harmonic distortions in urban radial residential distribution systems. The accomplishment of EV innovation relies on the accessibility of EV charging stations. To meet the power demand of growing EVs, utilities are introducing EV charging stations in private and public areas; this led to a change in the residential distribution system infrastructure. In this paper, an urban radial residential distribution system with the integration of an electric vehicle charging facility is considered for investigation. An impact of different EV penetration levels on voltage distortion is analysed. Different penetration levels of EVs into the residential distribution system are considered. Simulation results are presented to validate the work carried out in this paper. An attempt has been made to establish the relationship between the level of penetration of the EVs and voltage distortion in terms of THD (Total Harmonic Distortion)


2021 ◽  
Author(s):  
Nishant Kumar ◽  
Kumari Namrata

Abstract Background: The EV (Electric Vehicles) is rapidly growing as a substitute to oil dependant vehicles to minimize the pollutant and greenhouse gas (GHS) emissions. Various charging schemes and grid integration techniques are introduced to minimize the impacts of EV charging. Hence, this study introduced a system that uses renewable energy sources (RES) like solar energy, biomass and battery for EV charging.Objective: This study intended to calculate the cost of the system design as well as variations in its cost during the usage on an annual basis. In addition, it used various energy conversion technologies such as solar panel, battery and biomass to find the effective source of energy for EV charging through the proposed novel Optimal Firefly Algorithm (OFA). Methodology: An initial setup is made that consists of number of buildings, overall load demand, ratings of EV charging, storage capacity, grid intake and solar panel. Then, the proposed novel OFA is used to find the count of EVs that gets charged from the charging stations and its choice of charging from the charging stations. The computation is performed on an annual basis for the cost, energy and count of EVs that arrive to the charging stations to get it charged. Results: The proposed methodology is used to compare the efficiency of the solar, biomass and battery efficiency in charging an EV through computation of Net present cost, Cost of Energy, EV savings and power generation. The results revealed that that the proposed system is effective than the traditional methods and effectively identified that the solar energy is the effective source for EV charging.


2022 ◽  
pp. 25-37
Author(s):  
Sanchari Deb ◽  
Sulabh Sachan

The growing concern about fossil energy exhaustion, air pollution, and ecological deprivation has made electric vehicles (EVs) a practical option in contrast to combustion engine-driven vehicles. In any case, driving extent uneasiness is one of the innate inadequacies related with EVs. Massive integration of EV charging load into the power system may be a threat to the distribution network. Spontaneous situation of charging stations in the distribution system and uncoordinated charging will augment the load demand thereby resulting in voltage instability, deterioration of reliability indices, harmonic distortions, and escalated power losses. This chapter will concentrate on breaking down the effect of EV chargers on the working parameters, for example, voltage dependability, unwavering quality, and force misfortune. The examination will be completed on standard test systems. The discoveries of the proposed part will evaluate the effect of EV charging load on the working parameters of the distribution system and help in proposing a framework for charging station planning.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4079 ◽  
Author(s):  
Grzanic ◽  
Flammini ◽  
Prettico

Decarbonisation policies have recently seen an uncontrolled increase in local electricity production from renewable energy sources (RES) at distribution level. As a consequence, bidirectional power flows might cause high voltage/ medium voltage (HV/MV) transformers to overload. Additionally, not-well-planned installation of electric vehicle (EV) charging stations could provoke voltage deviations and cables overloading during peak times. To ensure secure and reliable distribution network operations, technology integration requires careful analysis which is based on realistic distribution grid models (DGM). Currently, however, only not geo-referenced synthetic grids are available inliterature. This fact unfortunately represents a big limitation. In order to overcome this knowledge gap, we developed a distribution network model (DiNeMo) web-platform aiming at reproducing the DGM of a given area of interest. DiNeMo is based on metrics and indicators collected from 99 unbundled distribution system operators (DSOs) in Europe. In this work we firstly perform a validation exercise on two DGMs of the city of Varaždin in Croatia. To this aim, a set of indicators from the DGMs and from the real networks are compared. The DGMs are later used for a power flow analysis which focuses on voltage fluctuations, line losses, and lines loading considering different levels of EV charging stations penetration.


2013 ◽  
Vol 380-384 ◽  
pp. 3400-3403 ◽  
Author(s):  
Qing Sheng Shi ◽  
Yi Cao

Building enough charging stations is the only way to let new energy vehicles come into our daily life. While, the cost of building a charging station is very expensive. Therefore, spatial optimal location of charging stations has to be dealt with. The main purpose of this paper is to investigate the spatial optimal location of charging stations using Gaussian Mixture Model clustering and charging requirement spots are taken as the clustering benchmark. The clustering procedure of charging station spatial optimal location is programmed using m-language. Finally, simulation results show the validity of proposed method.


Sign in / Sign up

Export Citation Format

Share Document