scholarly journals Evaluation of Dynamic Load Reduction for a Tractor Semi-Trailer Using the Air Suspension System at all Axles of the Semi-Trailer

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Dang Viet Ha ◽  
Vu Van Tan ◽  
Vu Thanh Niem ◽  
Olivier Sename

The air suspension system has become more and more popular in heavy vehicles and buses to improve ride comfort and road holding. This paper focuses on the evaluation of the dynamic load reduction at all axles of a semi-trailer with an air suspension system, in comparison with the one using a leaf spring suspension system on variable speed and road types. First, a full vertical dynamic model is proposed for a tractor semi-trailer (full model) with two types of suspension systems (leaf spring and air spring) for three axles at the semi-trailer, while the tractor’s axles use leaf spring suspension systems. The air suspension systems are built based on the GENSYS model; meanwhile, the remaining structural parameters are considered equally. The full model has been validated by experimental results, and closely follows the dynamical characteristics of the real tractor semi-trailer, with the percent error of the highest value being 6.23% and Pearson correlation coefficient being higher than 0.8, corresponding to different speeds. The survey results showed that the semi-trailer with the air suspension system can reduce the dynamic load of the entire field of speed from 20 to 100 km/h, given random road types from A to F according to the ISO 8608:2016 standard. The dynamic load coefficient (DLC) with the semi-trailer using the air spring suspension system can be reduced on average from 14.8% to 29.3%, in comparison with the semi-trailer using the leaf spring suspension system.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mohamed Essam Shalabi ◽  
Ahmed M. R. Fath Elbab ◽  
Haitham El-Hussieny ◽  
A. A. Abouelsoud

Author(s):  
Haitao Ding ◽  
Amir Khajepour ◽  
Yanjun Huang

This paper presents a novel system to avoid tripped rollovers at low-speed operations for commercial vehicles with air suspension systems. This is of particular significance since truck rollovers have become a serious road safety problem, which usually lead to severe injuries and fatalities. Several active anti-rollover systems have been proposed in the past two decades; however, most of them focus on untripped rollover prevention instead of the tripped rollovers. Up to now, very few pieces of literature discuss the approaches that are used to avoid tripped rollovers of trucks. Furthermore, the air suspension is widely used for commercial vehicles, thus it provides an opportunity to prevent rollovers when properly manipulated. Therefore, a novel tripped rollover prevention system is proposed for trucks at low-speed operations with air suspensions. A roll dynamics model with an air spring is built to investigate the dynamic behavior and the time response of the whole system. More importantly, the feasibility of this new anti-rollover system is discussed and verified by the co-simulations in TruckSim and MATLAB/Simulink under two possible tripped rollover conditions.


Author(s):  
Yoshihiro Suda ◽  
Wenjun Wang ◽  
Hisanao Komine ◽  
Yoshi Sato ◽  
Takuji Nakai ◽  
...  

This paper presents the curving performance of railway vehicles with Air Suspensions. Air Suspensions sometimes cause reduction of Wheel Load at transition curve negotiation. The axle spring of leading axle outside and air spring of leading bogie outside will extend when passing the exit transition curve because of the distortion of the track plane. Because Air Suspension has an automatic leveling function that each air spring is controlled by Leveling Valve to maintain a constant length, air in the extended spring exhaust through Leveling Valve to reduce the pressure of this air spring in order to make it back to original length. So the air spring pressure of leading bogie outside reduces furthermore and Wheel Load of leading axle outside reduces severely. This may be the reason of derailment. The distortion of track plane unbalances inner pressure of Air Suspensions and vertical load of wheels at entrance transition curve, because of the nonlinear characteristic of Air Suspension system caused by the Leveling Valve. Computer simulation of low speed transition curve negotiation shows that the lower running speed is, the more severe unbalance of Air Suspension inner pressure and Wheel Load become. The reduction of 1st axle outside wheel at exit transition curve is depended on this Wheel Load unbalance phenomena at circular curve. And this running process influences the after behavior of railway vehicle. The simulation also shows that the longer entrance transition curve is, the more severely the 1st axle outside Wheel Load reduces. The full-scale bench experiments gave the result as nearly same as computer simulation. A new concept control device is proposed to prevent the reduction of Wheel Load at exit transition curve. Both the simulation and bench experiment proved its control performance of Wheel Load reduction prevention. And proposed control device can also be used in tilting control and kneeling control of railway vehicle. General multi-body dynamics analysis software SIMPACK is used to confirm advantageous effect of proposed control device and full vehicle curve passing simulation shows that derailment coefficient reduced when proposed control device is applied in transition curve negotiation.


2011 ◽  
Vol 105-107 ◽  
pp. 701-704
Author(s):  
Gong Yu Pan ◽  
Xue Ling Hao

In order to improve the driver confortness, the 5-DOF analysis mathematical car model with the active seat air-spring suspension system was built. Based on the linear stochastic optimal control theory (LQG), the signal of road’s input as excitation source was used to design the optimal law of this seat active control system. MATLAB simulation programming language was applicated for the response simulation. The results show that the control strategy on the road excitation system has a good applicability on controlling the vibration of the driver’s seat and active seat suspension can more effectively reduce the driver’s vertical vibration acceleration than passive seat suspension.


2012 ◽  
Vol 472-475 ◽  
pp. 666-669
Author(s):  
Bin Yang ◽  
Jing Wen Wang

Wavelet transform was utilized in vibrant signal processing of air suspension system. A dynamic model of 1/4 engineering vehicle with air suspension system was established. Road surface signal of B grade was input to the dynamic model. Vibrant acceleration curve of under spring mass and dynamic load curve of air suspension was gained. Noise signal of under spring mass acceleration and dynamic load of air suspension system were filtrated by wavelet decomposition. Vibrant acceleration signal of under spring mass and dynamic load signal of air suspension were extracted by wavelet reconstruction. It can provide a theoretical foundation for identifying dynamic load of air suspension system.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Haider J. Abid ◽  
Jie Chen ◽  
Ameen A. Nassar

This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.


Author(s):  
Reza Kashani

Abstract Air suspension is gaining more and more popularity with both the auto industry and drivers. Traditionally the height adjustability aspect of air suspension systems has been their main attracting attribute. More recently, resolving the classic conflict of combining comfortable ride with sport handling in a single suspension setup has become the main attraction of air suspension. An air suspension system has been developed which in addition to height adjustment, can adjust its damping and stiffness in real time with using neither viscous dampers nor any additional actuators. This is done by real-time adjustment air flow to and from the air springs using proportional valves. Measured relative displacement and acceleration as well as estimated velocity of the sprung mass with respect to unspring mass at each corner are fedback, thru their corresponding gains, to create the control signal that adjusts the proportional valve with the goal of controlling the height, stiffness, and damping at that corner. In a numerical study followed by laboratory testing, the effectiveness of the proposed air suspension system in terms of its ability to vary the damping and stiffness as well as the height of the suspension system is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document