scholarly journals Reusable and Reliable Flight-Control Software for a Fail-Safe and Cost-Efficient Cubesat Mission: Design and Implementation

Aerospace ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 146
Author(s):  
Ibtissam Latachi ◽  
Tajjeeddine Rachidi ◽  
Mohammed Karim ◽  
Ahmed Hanafi

While there is no rigorous framework to develop nanosatellites flight software, this manuscript aimed to explore and establish processes to design a reliable and reusable flight software architecture for cost-efficient student Cubesat missions such as Masat-1. Masat-1 is a 1Unit CubeSat, developed using a systems engineering approach, off-the-shelf components and open-source software tools. It was our aim to use it as a test-bed platform and as an initial reference for Cubesat flight software development in Morocco. The command and data handling system chosen for Masat-1 is a system-on-module-embedded computer running freeRTOS. A real-time operating system was used in order to simplify the real-time onboard management. To ensure software design reliability, modularity, reusability and extensibility, our solution follows a layered service oriented architectural pattern, and it is based on a finite state machine in the application layer to execute the mission functionalities in a deterministic manner. Moreover, a client-server model was elected to ensure the inter-process communication and resources access while using uniform APIs to enhance cross-platform data exchange. A hierarchical fault tolerance architecture was also implemented after a systematic assessment of the Masat-1 mission risks using reliability block diagrams (RBDs) and functional failure mode, effect and criticality analysis (FMECA).

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 825
Author(s):  
Jong-Seo Yoon ◽  
Jiwon Park ◽  
Hye-Rin Ahn ◽  
Seong-Jae Yoo ◽  
Yong-Jun Kim

Airborne metal particles (MPs; particle size > 10 μm) in workplaces result in a loss in production yield if not detected in time. The demand for compact and cost-efficient MP sensors to monitor airborne MP generation is increasing. However, contemporary instruments and laboratory-grade sensors exhibit certain limitations in real-time and on-site monitoring of airborne MPs. This paper presents a microfluidic MP detection chip to address these limitations. By combining the proposed system with microcirculation-based particle-to-liquid collection and a capacitive sensing method, the continuous detection of airborne MPs can be achieved. A few microfabrication processes were realized, resulting in a compact system, which can be easily replaced after contamination with a low-priced microfluidic chip. In our experiments, the frequency-dependent capacitive changes were characterized using MP (aluminum) samples (sizes ranging from 10 μm to 40 μm). Performance evaluation of the proposed system under test-bed conditions indicated that it is capable of real-time and continuous monitoring of airborne MPs (minimum size 10 μm) under an optimal frequency, with superior sensitivity and responsivity. Therefore, the proposed system can be used as an on-site MP sensor for unexpected airborne MP generation in precise manufacturing facilities where metal sources are used.


Robotica ◽  
2004 ◽  
Vol 22 (6) ◽  
pp. 661-679 ◽  
Author(s):  
J. Z. Pan ◽  
R. V. Patel

Sophisticated robotic applications require systems to be reconfigurable at the system level. Aiming at this requirement, this paper presents the design and implementation of a software architecture for a reconfigurable real-time multi-processing system for multi-robot control. The system is partitioned into loosely coupled function units and the data modules manipulated by the function units. Modularized and unified structures of the sub-controllers and controller processes are designed and constructed. All the controller processes run autonomously and intra-sub-controller information exchange is realized by shared data modules that serve as a data repository in the sub-controller. The dynamic data-management processes are responsible for data exchange among sub-controllers and across the computer network. Among sub-controllers there is no explicit temporal synchronization and the data dependencies are maintained by using datum-based synchronization. The hardware driver is constructed as a two-layered system to facilitate adaptation to various robotic hardware systems. A series of effective schemes for software fault detection, fault anticipation and fault termination are accomplished to improve run-time safety. The system is implemented cost-effectively on a QNX real-time operating system (RTOS) based system with a complete PC architecture, and experimentally validated successfully on an experimental dual-arm test-bed. The results indicate that the architectural design and implementation are well suited for advanced application tasks.


Author(s):  
Jianzhe Huang ◽  
David Peters

Real-time inflow model for lifting rotor is required for pilot-in-the-loop simulation and flight control design. The recent developed blended inflow model have advanced the state-of-the-art with closed-form solution for all three components of the flow everywhere in the field, including below the plane of the rotor disk both in-wake and out-of-wake. The nonlinearity will be introduced in such blended model to make it more flexible not only for helicopter in cruise condition, but also for helicopter in low speed flight or hover. The dynamic loading for such inflow model will be computed in real-time based on blade element theory. Then the flap motions of blades of lifting rotor will be coupled, and the induced velocity will be solved numerically in the time domain through the simpletic scheme. A Harrington rotor will be studied as an example. The induced velocity in the time domain for such a rotor will be calculated with a specific flight controls.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2337
Author(s):  
Anna Arestova ◽  
Maximilian Martin ◽  
Kai-Steffen Jens Hielscher ◽  
Reinhard German

The transportation industry is facing major challenges that come along with innovative trends like autonomous driving. Due to the growing amount of network participants, smart sensors, and mixed-critical data, scalability and interoperability have become key factors of cost-efficient vehicle engineering. One solution to overcome these challenges is the AUTOSAR Adaptive software platform. Its service-oriented communication methodology allows a standardized data exchange that is not bound to a specific middleware protocol. OPC UA is a communication standard that is well-established in modern industrial automation. In addition to its Client–Server communication pattern, the newly released Publish–Subscribe (PubSub) architecture promotes scalability. PubSub is designed to work in conjunction with Time-Sensitive Networking (TSN), a collection of standards that add real-time aspects to standard Ethernet networks. TSN allows services with different requirements to share a single physical network. In this paper, we specify an integration approach of AUTOSAR Adaptive, OPC UA, and TSN. It combines the benefits of these three technologies to provide deterministic high-speed communication. Our main contribution is the architecture for the binding between Adaptive Platform and OPC UA. With a prototypical implementation, we prove that a combination of OPC UA Client–Server and PubSub qualifies as a middleware solution for service-oriented communication in AUTOSAR.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Yong Park ◽  
Gina Faraci ◽  
Pamela M. Ward ◽  
Jane F. Emerson ◽  
Ha Youn Lee

AbstractCOVID-19 global cases have climbed to more than 33 million, with over a million total deaths, as of September, 2020. Real-time massive SARS-CoV-2 whole genome sequencing is key to tracking chains of transmission and estimating the origin of disease outbreaks. Yet no methods have simultaneously achieved high precision, simple workflow, and low cost. We developed a high-precision, cost-efficient SARS-CoV-2 whole genome sequencing platform for COVID-19 genomic surveillance, CorvGenSurv (Coronavirus Genomic Surveillance). CorvGenSurv directly amplified viral RNA from COVID-19 patients’ Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens and sequenced the SARS-CoV-2 whole genome in three segments by long-read, high-throughput sequencing. Sequencing of the whole genome in three segments significantly reduced sequencing data waste, thereby preventing dropouts in genome coverage. We validated the precision of our pipeline by both control genomic RNA sequencing and Sanger sequencing. We produced near full-length whole genome sequences from individuals who were COVID-19 test positive during April to June 2020 in Los Angeles County, California, USA. These sequences were highly diverse in the G clade with nine novel amino acid mutations including NSP12-M755I and ORF8-V117F. With its readily adaptable design, CorvGenSurv grants wide access to genomic surveillance, permitting immediate public health response to sudden threats.


2021 ◽  
pp. 107754632110191
Author(s):  
Farzam Tajdari ◽  
Naeim Ebrahimi Toulkani

Aiming at operating optimally minimizing error of tracking and designing control effort, this study presents a novel generalizable methodology of an optimal torque control for a 6-degree-of-freedom Stewart platform with rotary actuators. In the proposed approach, a linear quadratic integral regulator with the least sensitivity to controller parameter choices is designed, associated with an online artificial neural network gain tuning. The nonlinear system is implemented in ADAMS, and the controller is formulated in MATLAB to minimize the real-time tracking error robustly. To validate the controller performance, MATLAB and ADAMS are linked together and the performance of the controller on the simulated system is validated as real time. Practically, the Stewart robot is fabricated and the proposed controller is implemented. The method is assessed by simulation experiments, exhibiting the viability of the developed methodology and highlighting an improvement of 45% averagely, from the optimum and zero-error convergence points of view. Consequently, the experiment results allow demonstrating the robustness of the controller method, in the presence of the motor torque saturation, the uncertainties, and unknown disturbances such as intrinsic properties of the real test bed.


Author(s):  
Wolf Schulze ◽  
Maurizio Zajadatz ◽  
Michael Suriyah ◽  
Thomas Leibfried

AbstractA test bed for the evaluation of novel control methods of inverters for renewable power generation is presented. The behavior of grid-following and grid-forming control in a test scenario is studied and compared.Using a real-time capable control platform with a cycle time of 50 µs, control methods developed with Matlab/Simulink can be implemented. For simplicity, a three-phase 4‑quadrant voltage amplifier is used instead of an inverter. Thus, the use of modulation and switched power semiconductors can be avoided. In order to show a realistic behavior of a grid-side filter, passive components can be automatically connected as L‑, LC- or LCL-filter. The test bed has a nominal active power of 43.6 kW and a nominal voltage of 400 V.As state-of-the-art grid-following control method, a current control in the d/q-system is implemented in the test bed. A virtual synchronous machine, the Synchronverter, is used as grid-forming control method. In combination with a frequency-variable grid emulation, the behavior of both control methods is studied in the event of a load connection in an island grid environment.


Sign in / Sign up

Export Citation Format

Share Document