scholarly journals Aroma Profile, Microbial and Chemical Quality of Ensiled Green Forages Mixtures of Winter Cereals and Italian Ryegrass

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 512
Author(s):  
Alemayehu Worku ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

The objective of this study was to evaluate the aroma profile, microbial and chemical quality of winter cereals (triticale, oats, barley and wheat) and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four commercial mixtures (mixture A (40% of two cultivars of winter triticale + 30% of two cultivars of winter oats + 20% of winter barley + 10% of winter wheat), mixture B (50% of two cultivars of winter triticale + 40% of winter barley + 10% of winter wheat), mixture C (55% of three types of Italian ryegrass + 45% of two cultivars of winter oat), mixture D (40% of three types of Italian ryegrass + 30% of two cultivars of winter oat + 15% of two cultivars of winter triticale + 10% of winter barley + 5% of winter wheat)) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Mixture C had higher (p < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. In general, the electronic nose (EN) results revealed that the Italian ryegrass and winter cereal mixtures (mixture D) had better aroma profile as compared to winter cereal mixtures (mixture A and B). However, the cereal mixtures (mixture A and B) had better aroma quality than mixture C silage. Otherwise, the EN technology is suitable in finding off odor compounds of ensiled forages.

2021 ◽  
Author(s):  
Alemayehu Worku Babu ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

Abstract During silage making microbial fermentation produces an array of end products which can influence the odour of the final silage and can also change many nutritive aspects of a forage. The objective of this study was to evaluate the fermentation quality and aroma profile of winter cereals and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four mixtures (mixture A: triticale, oats, barley and wheat; mixture B: triticale, barley and wheat; mixture C: IRG and oats; mixture D: IRG, oats, triticale, barley and wheat) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Mixture C had higher (P < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. In general, the electronic nose (EN) results revealed that the ensiled mixtures were dominated by ethyl ester likely producing pleasant fruity odors which could increase the intake of ensiled mixtures. However, the technology is suitable in finding off odor compounds of ensiled forages that may likely reduce feed intake.


1996 ◽  
Vol 76 (2) ◽  
pp. 251-257 ◽  
Author(s):  
V. S. Baron ◽  
E. A. de St Remy ◽  
D. F. Salmon ◽  
A. C. Dick

Spring planted mixtures of spring and winter cereals maximize dry matter yield and provide fall pasture by regrowth of the winter cereal. However, delay of initial harvest may reduce the winter cereal component and therefore subsequent regrowth yield. Research was conducted at Lacombe, Alberta to investigate the effect of time of initial cut (stage), winter cereal species (species) and cropping system (monocrop and mixture) on winter cereal shoot weight, leaf carbon exchange efficiency and shoot morphology. These parameters may be related to adaptation of winter cereals to growth and survival in the mixture. Winter cereal plants were grown in pails embedded in monocrop plots of fall rye (Secale cereale L.), winter triticale (X Triticosecale Wittmack) and winter wheat (Triticum aestivum L.) and in binary mixtures with Leduc barley (Hordeum vulgare L.). The plants were removed when the barley reached the boot (B), heads emerged (H), H + 2, H + 4 and H + 6 wk stages. Shoot weight was generally smaller in the mixture than in the monocrop and wheat was reduced more than fall rye and triticale in the mixture compared to the monocrop. Dark respiration rate (r = −0.54) and carbon exchange (r = 0.36) under low light intensity were correlated (P < 0.05) to shoot size in the mixture. Fall rye and winter triticale had lower dark respiration rates than winter wheat. Leaf area index (LAI) was closely correlated (r = 0.83 and 0.84) with shoot weight in both the mixture and monocrop. While species failed to exhibit clear cut differences for LAI, fall rye and winter triticale were reduced less than winter wheat in the mixture relative to the monocrop. Stage was the dominant factor affecting winter cereal growth in both cropping systems, but fall rye and triticale exhibited superior morphological features, and their carbon exchange responses to light were more efficient than wheat, which should allow them to be sustained longer under the shaded conditions of a mixture. Key words: Delayed harvest, shade, spring and winter cereal mixtures, adaptation, carbon exchange, respiration


2017 ◽  
Vol 31 (2) ◽  
pp. 273-285
Author(s):  
Tomasz Zając ◽  
Agnieszka Synowiec ◽  
Andrzej Oleksy ◽  
Jan Macuda ◽  
Agnieszka Klimek-Kopyra ◽  
...  

Abstract Cereal straw is an important biomass source in Europe. This work assessed: 1) the morphological and energetic characteristics of culms of spring and winter cereals, 2) the energy deposited in the different aboveground parts of cereals, 3) losses of energy due to different cutting heights. The straw of winter and spring cereals was collected from arable fields during the seasons 2009/10 and 2010/11 in southern Poland. Detailed biometric measurements of culms and internodes were performed. The losses of straw biomass and energy were assessed during simulation of cutting the culm at different heights, up to 50 cm. Longer and heavier culms were developed by winter wheat and triticale and oat. Cutting of straw up to 10 cm did not lead to significant losses in straw yield. The total amount of energy in the culms was as follows: triticale > winter wheat > oat > spring wheat > winter barley > spring barley. Cutting the culms above 20 cm led to significant differences in terms of biomass energy between cereal species. The smallest losses of energy were recorded for spring and winter barley. Oat and barley accumulated the highest energy in grains.


2021 ◽  
Vol 66 (No. 8) ◽  
pp. 302-314
Author(s):  
Alemayehu Worku ◽  
Róbert Tóthi ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

This study was conducted using three multiparous non-lactating rumen-cannulated Holstein-Friesian dairy cows, with the objective of evaluating the in situ ruminal degradability and fermentation characteristics of novel mixtures of winter cereal and Italian ryegrass (Lolium multiflorum Lam.) plus winter cereal silages (mixture A: triticale, oats, barley and wheat; mixture B: triticale, barley and wheat; mixture C: Italian ryegrass and oats; mixture D: Italian ryegrass, oats, triticale, barley and wheat). The rumen fermentation study was conducted replacing the ensiled mixtures (experimental diets) with vetch-triticale haylage in a total mixed ration (control diet). It was found that the effective protein degradability at 0.08 rumen outflow rates was 80.6% (mixture A), 66.2% (mixture B), 79.7% (mixture C) and 79.3% (mixture D). The effective neutral detergent fibre (NDF) and acid detergent fibre (ADF) effective degradability at 0.08 rumen outflow rates was 18.0% and 17.7% (mixture A), 19.7% and 20.5% (mixture B), 19.1% and 17.0% (mixture C), and 15.2% and 14.6% (mixture D), respectively. Different dietary treatments did not change (P &gt; 0.05) the rumen fermentation characteristics as there was no difference (P &gt; 0.05) between control and experimental diets, and the inclusion of 40–55% Italian ryegrass (mixture C and D) did not cause any difference. These results suggest that the mixture of winter cereals and Italian ryegrass plus winter cereal-based silages had good potentially degradable dry matter, effective dry matter and effective protein degradability at 0.01, 0.05 and 0.08 rumen outflow rates without affecting the rumen environment maintaining neutral pH. The ensiled mixtures had a moderate level of potentially degradable NDF and ADF fractions.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 304 ◽  
Author(s):  
Katarzyna Panasiewicz ◽  
Agnieszka Faligowska ◽  
Grażyna Szymańska ◽  
Jerzy Szukała ◽  
Karolina Ratajczak ◽  
...  

Legumes are increasingly important crops in most European Union (EU) countries because of the growing demand for feed protein, and also because they have been shown to improve the characteristics of soil. The main part of the crop rotation is taken up by cereals, but they are connected with undesirable side effects, such as the unilateral utilization of ingredients and the heightened risk of plant diseases, e.g., Fusarium. Simplification of farming methods has become increasingly popular as growers search for cheaper production technologies. However, the effects of long-term simplification in tillage practices on the production and economics of narrow-leafed lupine (NL) cultivation have not been studied. In 2012–2016, we carried out a field experiment in Poland with a one-factorial design with four replications. The aim of the experiment was to evaluate the productivity effect of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on NL-winter wheat (WW)-winter triticale (WT)-winter barley (WB), rotation. Our results show that the productivity of this crop rotation was lower under RT and NT systems than under CT. From a practical point of view, the reduction of cultivation in rotation with 75% of cereals caused a decrease in yield in all species, which can result in resign of using the RT and NT in conditions of Albic Luvisols soil, as classified according to the World Reference Base (WRB). The highest incomes were found when the CT system was used with NL. Although income losses exceeded the value of savings in both minimalized soil tillage systems (RT and NT), all tillage systems of NL were profitable.


1994 ◽  
Vol 74 (1) ◽  
pp. 7-13 ◽  
Author(s):  
V. S. Baron ◽  
A. C. Dick ◽  
E. A. de St. Remy

Spring-planted mixtures of spring and winter cereals in a silage/fall pasture system have been shown to extend the grazing season in the Parkland of the Canadian prairies. Experiments were conducted at Lacombe, Alberta to determine the effects of planting date on yield and yield components of spring-seeded spring oat (Avena sativa L.), winter wheat (Triticum aestivum L.), winter triticale (X Triticosecale Wittmack) and winter rye (Secale cereale L.). The cereals were grown as monocrops or as binary mixtures of the oat and winter cereals. Treatments were planted in early May and mid-June and harvested twice for forage. The initial harvest for early and late planting dates occurred when oat reached the early-milk and heading stages, respectively. Regrowth was harvested in mid- to late September. The planting date x treatment interaction did not affect (P ≤ 0.05) annual yield (initial + regrowth) even though oat was harvested at different developmental stages. Averaged over treatments, late planting reduced annual yield by 42%. The annual yields ranked: mixtures = oat monocrop > winter cereals. Late planting date reduced the initial yield of all treatments, but the winter monocrops were reduced less than oat. Oat dominated the initial yield of all mixtures. Although oat tiller density was lower in the mixtures than monocropped oat at the initial cut, oat constituted a greater proportion of the mixture than would have been expected from the seeding ratio (1:1). A larger tiller weight in the oat mixture vs. the monocrop may have compensated for low tiller density in the mixture. Mixture regrowth yields tended to be greater in late-planted treatments and were dominated by the winter cereals. Although the winter cereal component of the mixture had more tillers at the regrowth cut, they still had lower yields when compared with their respective monocrops. Thus, late planting reduced annual yields of mixtures and monocrops, but did not limit regrowth of winter cereals in mixtures given equal regrowth periods. Key words: Oat, winter rye, winter wheat, winter triticale, forage yield, tillering


2012 ◽  
Vol 52 (10) ◽  
pp. 949 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward

An experiment was undertaken over 2 years (2007–09) to determine the effect of intercropping forage peas with either forage winter wheat or triticale for whole-crop silage. Monocultures of triticale (T100), wheat (W100) and forage peas (P100) and plus cereal–pea combinations of 75% triticale : 25% pea (T75), 50% triticale : 50% pea (T50), 25% triticale : 75% pea (T25), 75% wheat : 25% pea (W75), 50% wheat : 50% pea (W50), 25% wheat : 75% pea (W25), with ratios based on sowing rate, were evaluated for DM yield and nutritional characteristics at a range of growth stages. It was hypothesised that an increase in the ratio of peas to cereal would not adversely affect DM yield and would have a positive impact on nutritive characteristics across a range of harvest times based on growth stages of the cereal component of mixes. In Year 1, at the boot stage of growth of cereals, P100 had a lower DM yield than W100 and all triticale-based treatments, while in Year 2 P100 had a lower DM yield than all other treatments. By the soft dough growth stage in Year 1, all triticale treatments except T25 had higher DM yields than P100 and in Year 2 P100 had a lower DM yield than all triticale treatments and W100. The crude protein (CP) concentration of P100 at the boot stage of growth was higher than T100, T75, T50, W100 and W50 in Year 1 and all treatments in Year 2. At soft dough, P100 had a higher CP concentration than all other treatments in both years, while T25 and W25 had higher CP concentrations than their respective monocultures. In Year 1 at soft dough, W100 had a lower estimated ME concentration than other wheat treatments and P100, while in Year 2, T50 and W50 had higher values than T100 and W100, respectively. Bi-cropping forage peas with winter cereal forage crops did not adversely affect DM yields at a range of different harvest times, but did not consistently and significantly improve nutritive characteristics. Despite relatively high sowing rates of forage peas, their total contribution in mixes with cereals to DM yield was low, indicating that their ability to compete with winter cereals under the high fertility conditions of the experiment was low. When grown as a monoculture peas tended to produce lower DM yields but had higher CP concentrations and a higher harvested CP/ha at the soft dough stage of growth. The timing of harvesting will affect DM yields and nutritive characteristics and can be manipulated depending upon the end use of the feed grown and also to allow greater flexibility in the sowing of subsequent forages. Consideration should also be given to the growing of monocultures of winter cereals and forage peas and developing systems to mix during ensiling to capture both DM yield potential and optimum nutritive characteristics.


1988 ◽  
Vol 110 (2) ◽  
pp. 285-299 ◽  
Author(s):  
K. Chaney ◽  
G. A. Paulson

SummaryThe results of 173 field experiments carried out between 1957 and 1986 are presented comparing ammonium nitrate and urea as top-dressings for winter cereals and grassland.The trials show that urea was an inferior nitrogen source to ammonium nitrate. The yield from ammonium nitrate was significantly greater than that from urea for winter wheat, winter barley and for first, second and third cut silage. The results suggest (a) that winter wheat and winter barley respond differently to the two nitrogen sources and (b) that yield losses from urea are just as likely on first cut silage as second or third cut.A breakdown of results according to soil texture, soil pH and region showed no consistent differences in yield loss. This indicates that broad generalizations based on soil characters and geographical location are not helpful in distinguishing situations where urea performance may be either better or worse than average.


1999 ◽  
Vol 79 (4) ◽  
pp. 565-577 ◽  
Author(s):  
P. E. Juskiw ◽  
D. F. Salmon ◽  
J. H. Helm

Spring-planted winter cereals grown as monocrops or in mixture with spring cereals maintain yield and quality into late summer and fall, and can be used to replace or complement perennial pasture. Our objectives were to determine the response to clipping of spring-planted winter cereals, and to determine the effects of seeding rates and ratios of spring to winter cereals on this response. Monocrops of winter triticale (X Triticosecale Wittmack) cv. Pika and winter rye (Secale cereale L.) cv. Musketeer and mixtures of these cereals with the spring barley (Hordeum vulgare L.) cv. Noble were evaluated. Tests were conducted from 1991 to 1993 at Botha and Lacombe, AB. Mixtures of spring:winter cereals were 0:100, 25:25, 25:75, 50:50, 75:25, 75:75 and 100:100 (Lacombe only), where the ratio of components represented the percentage of the base seeding rate of 250 seeds m−2. Biomass yields for triticale treatments (5.5 t ha−1 at Botha and 6.3 t ha−1 at Lacombe for the May to October growing season) were generally as high as for the rye treatments (5.9 t ha−1 at Botha and Lacombe); however, at Lacombe, spring regrowth after overwintering for triticale treatments was only 0.6 t ha−1 compared with 1.0 t ha−1 for rye treatments (LSD0.05 = 0.17). As little as 25% spring barley in a mixture ensured good early-season biomass yields, but more than 50% reduced late-season biomass yields. All treatments produced good-quality forage with protein >20%, neutral detergent fibre (NDF) <45% and acid detergent fibre (ADF) <30%. Nitrate contents were frequently >0.5% at both sites in 1991 and 1992, especially for those treatments with spring barley. Key words: Winter triticale, winter rye, annual forage, biomass, forage quality


Sign in / Sign up

Export Citation Format

Share Document