scholarly journals Value of Wholegrain Rice in a Healthy Human Nutrition

Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 720
Author(s):  
Marina Carcea

Rice is one of the most widely consumed cereals in the world. The husks of harvested, unprocessed rice are not digested by humans and need to be removed to obtain edible grains, whereas the bran can be partially (brown rice) or totally removed (white rice). Brown rice is a wholegrain cereal and, as such, is known to have beneficial effects on human health. Recent epidemiological studies have shown that the consumption of whole grains can reduce the risk of metabolic disorders, cardiovascular diseases, and some types of cancer. However, white rice is preferred for reasons connected to appearance, taste, palatability, ease of cooking, tradition, safety, shelf-life, and lack of awareness about its benefits and availability. In this review, the latest scientific reports regarding the nutritional composition of brown rice and the evolution of the technology for its production will be briefly reviewed together with research on nutritional implications of brown rice consumption also in relation to cancer development in humans. A specific chapter is devoted to pigmented rice which, thanks to its composition, has attracted the growing interest of consumers worldwide. The need for further studies to help promote the consumption of wholegrain rice are also discussed.

2014 ◽  
Vol 931-932 ◽  
pp. 744-748 ◽  
Author(s):  
Anwar Mallongi ◽  
Poranee Pataranawat ◽  
Preeda Parkpian

Available forms of mercury (Hg) released from artisanal gold mine activities could be taken up increasingly by plants via root and leaf stomata. Total mercury (THg) concentrations in dry deposit, surface soil and rice grains were investigated as well as the potential risks in september 2011 from three rice fields of concern. The results revealed that the concentrations of THg in dry deposition, top soil (0 to 5 cm depth), sub soil (6 to 10 cm depth) and rice grains (Oriza sativa L.) both brown (once milled) and white (twice milled) grains were ranged from 166 to 322 m-2 day-1, 484 to 4244 μg kg-1dw, 122 to 1812 μg kg-1ww, and 113 to 1084 μg kg-1ww, respectively. Hazard quotient (HQ) values for dry deposition, top soil and sub soil were ranged from 3 to 7, 5 to 42 and 5 to 36, respectively. Target hazard quotient (THQ) for brown and white rice grains consumptions were found in the range of 0.1 to 1.6 and 0.1 to 1.0, respectively. THQ values through brown rice consumption exceeded the guideline (>1) presented that the brown rice in these areas should not be safe for consumption and are at risks for the whole lifespan. However, the THQ values of both brown and white rice grains in some areas were still low and should be safe for the whole life span consumption.


2019 ◽  
Vol 44 (5) ◽  
pp. 528-532
Author(s):  
Kimi Sawada ◽  
Yukari Takemi ◽  
Nobuko Murayama ◽  
Hiromi Ishida

Increasing obesity rates have driven research into dietary support for body weight control, but previous studies have only assessed changes in body weight of ±3 kg. We investigated the relationships between white or brown/multi-grain rice consumption and 1-year body weight gain ≥3 kg in Japanese factory workers (n = 437). Routine medical check-up data from a 1-year nutrition and lifestyle cohort study were analysed. Participants were divided into white rice and brown/multi-grain rice consumption groups and further classified by tertile of rice consumption. Multiple logistic regression analyses were performed by tertile. At 1 year, high white rice consumption was significantly associated with increased risk of body weight gain ≥3 kg compared with low white rice consumption, maintained after adjustment for age, sex, and consumption of other obesogenic foods (p = 0.034). In the brown/multi-grain rice consumption group, however, there was no significant difference in risk between high and low consumption, even after multi-variate adjustment (p = 0.387). The consumption of white rice, but not brown rice/multi-grain rice, was positively correlated with the risk of a 1-year body weight gain of 3 kg or more. This suggests that brown rice/multi-grain rice consumption is useful for body weight control among Japanese workers.


2020 ◽  
Vol 26 (39) ◽  
pp. 4953-4954
Author(s):  
Mallikarjuna Korivi ◽  
Betty Revon Liu

Metabolic syndrome (MetS) which is caused by poor dietary habits and sedentary behavior is a serious global health problem. MetS is a cluster of risk factors, represented by central obesity, hyperglycemia, dyslipidemia, and hypertension. In the 21st century, MetS and associated comorbidities, including obesity, diabetes and cardiovascular diseases, are the major threats to human health. Practical dietary strategies, nutritional bioactive compounds and a healthy lifestyle are claimed to be efficient in the management of one or more components of MetS. Nevertheless successful management of MetS and commodities is still a major concern. Since hyperglycemia, inflammation and redox imbalance are intrinsically involved in the progression of MetS comorbidities, finding effective strategies that precisely target these systems is highly warranted. In this scenario, pharmacological and non-pharmacological approaches with or without dietary patterns, phytochemicals or exercise interventions are the practical strategies to combat MetS and associated diseases. However, designing and prescribing of optimal nutritional patterns and exercise regimens remains a big challenge to achieve the maximum beneficial effects. This thematic issue addressed the concerns and provided practical strategies to overcome the malady of MetS in the modern world.


Author(s):  
Riikka E. Taskinen ◽  
Sari Hantunen ◽  
Tomi-Pekka Tuomainen ◽  
Jyrki K. Virtanen

Abstract Background/objectives Epidemiological studies suggest that whole grain intake has inverse associations with low-grade inflammation, but findings regarding refined grains are inconclusive. Our objective was to investigate whether consumption of whole or refined grains is associated with serum high sensitivity CRP (hs-CRP). Subjects/methods The study included 756 generally healthy men and women aged 53–73 years from the Kuopio Ischaemic Heart Disease Risk Factory Study, examined in 1999–2001. Dietary intakes were assessed using 4-day food records. ANCOVA and linear regression were used for analyses. Results The mean intake of whole and refined grains was 136 g/day (SD 80) and 84 g/day (SD 46), respectively. Higher whole grain intake was associated with lower hs-CRP concentration and higher refined grain intake with higher concentration after adjustment for lifestyle and dietary factors. Each 50 g/d higher whole grain intake was associated with 0.12 mg/L (95% Cl 0.02–0.21 mg/L) lower hs-CRP concentration and each 50 g/d higher refined grain intake with 0.23 mg/L (95% Cl 0.08–0.38) higher concentration. Adjustment for fibre from grains attenuated the associations especially with whole grains. There were no statistically significant interactions according to gender or BMI (P for interactions >0.065). Conclusions The results of this study suggest that higher intake of whole grains is associated with lower concentrations of hs-CRP and higher intake of refined grains is associated with higher concentrations. However, especially the association with whole grain intake was attenuated after adjusting for fibre intake from grains, suggesting that cereal fibre may partly explain the association.


2021 ◽  
Author(s):  
Qi Guan ◽  
Xinwen Ding ◽  
Lingyue Zhong ◽  
Chuang Zhu ◽  
Pan Nie ◽  
...  

Long term high-fat diet (HF) can cause metabolic disorders, which might induce fatty liver. Fermented whole cereal food exhibit healthy potential due to their unique phytochemical composition and probiotics. In...


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 299 ◽  
Author(s):  
Manoj Kumar ◽  
Vivek Saurabh ◽  
Maharishi Tomar ◽  
Muzaffar Hasan ◽  
Sushil Changan ◽  
...  

Mangifera indica L. belongs to the family of Anacardiaceae and is an important fruit from South and Southeast Asia. India, China, Thailand, Indonesia, Pakistan, Mexico, Brazil, Bangladesh, Nigeria, and the Philippines are among the top mango producer countries. Leaves of the mango plant have been studied for their health benefits, which are attributed to a plethora of phytochemicals such as mangiferin, followed by phenolic acids, benzophenones, and other antioxidants such as flavonoids, ascorbic acid, carotenoids, and tocopherols. The extracts from mango leaves (MLs) have been studied for their biological activities, including anti-cancer, anti-diabetic, anti-oxidant, anti-microbial, anti-obesity, lipid-lowering, hepato-protection, and anti-diarrheal. In the present review, we have elaborated on the nutritional and phytochemical profile of the MLs. Further, various bioactivities of the ML extracts are also critically discussed. Considering the phytochemical profile and beneficial effects of the MLs, they can be used as a potential ingredient for the development of functional foods and pharmaceutical drugs. However, more detailed clinical trials still needed to be conducted for establishing the actual efficacy of the ML extracts.


2013 ◽  
Vol 16 (2) ◽  
pp. 342 ◽  
Author(s):  
Srinivas Nammi ◽  
Basil D Roufogalis

Purpose: Fatty liver disease, a hepatic manifestation of metabolic syndrome, is one of the major causes of chronic liver diseases. Epidemiological studies suggest that regular light-to-moderate ethanol consumption lowers the risk of developing metabolic disorders including dislipidemia, insulin resistance, type 2 diabetes and fatty liver disease. However, the mechanism(s) of the protective effect of light-to-moderate ethanol consumption on the liver remains unknown. Methods: In the present study, we investigated the effects of light (6%, 0.94 g/kg/day) and moderate (12%, 1.88 g/kg/day) ethanol feeding in rats for 3 weeks on the circulating and hepatic biochemical profiles and on the hepatic protein expression and phosphorylation status of adenosine monophosphate-activated protein kinase-α (AMPK-α) and other down-stream targets of this enzyme including sterol regulatory element-binding protein-1 (SREBP-1), SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase). Results: Despite no significant difference in food-intake among the groups, light ethanol treatment significantly increased the body weight compared to control rats. Serum glucose, insulin, total cholesterol, triglycerides, phospholipids and hepatic cholesterol and triglycerides were not significantly different among the groups. However, serum free fatty acids were significantly reduced with light ethanol treatment. Both light and moderate ethanol treatment significantly increased the hepatic levels of phosphorylated AMPK-α protein and this was associated with significant reduction of SREBP-1 protein expression, suggesting an enhanced fatty acid oxidation. In addition, light ethanol treatment significantly decreased the SCAP protein expression in the liver. However, liver HMG-CoA protein expression was not significantly different with ethanol consumption. Conclusion: Chronic light-to-moderate ethanol consumption increased AMPK activation which was associated with decreased expression of SREBP-1 and SCAP in the liver. Thus, our studies provide mechanistic evidence for the earlier epidemiological studies that indicate light-to-moderate ethanol intake lowers the risk of development of fatty liver disease and other metabolic disorders. Our studies demonstrate that the protective effects of light-to-moderate ethanol arise at least in part by increased phosphorylation of AMPK-α and decreased SREBP-1 expression in the liver. Further studies are warranted to determine the effects of light-to-moderate ethanol on intracellular up-stream and down-stream targets of AMPK and also on the implications of light-to-moderate ethanol in protecting non-alcoholic fatty liver disease. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2021 ◽  
Vol 2 (2) ◽  
pp. 12
Author(s):  
Samina Akbar ◽  
Muhammad Zeeshan Bhatti ◽  
Rida Fatima Saeed ◽  
Asma Saleem Qazi

Over the last decades, the polyunsaturated fatty acids (PUFAs) have been largely explored not only for their nutritional value but also for the numerous biological functions and therapeutic effects. The serum and erythrocyte levels of PUFAs depend on the genetic control of metabolism as well as the dietary intake and are considered to reflect the health and disease status of an individual. Two families of PUFAs, omega-3 (n-3) and omega-6 (n-6), have gained much attention because of their involvement in the production of bioactive lipid mediators and therefore, a balanced omega-6/omega-3 ratio is crucial in maintaining the overall health of an individual. Omega-3 PUFAs, notably eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have been shown to exert beneficial effects, possibly due to their lipid-lowering, anti-inflammatory, anti-hypertensive and cardioprotective effects, whereas omega-6 fatty acids such as arachidonic acid (ARA, 20:4n-6) exhibit the opposite properties. Even though, numerous epidemiological studies and clinical interventions have clearly established the effectiveness of omega-3 PUFAs in various pathological conditions including dyslipidemia, obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases, some controversies do exist about the beneficial effects of omega-3 PUFAs and need to be clarified. Larger clinical trials with extended follow-up periods are required along with a careful dose selection, in order to confirm the clinical significance and efficacy of omega-3 PUFAs as therapeutic agents.


2021 ◽  
pp. 1-12
Author(s):  
Manoj Menon ◽  
Amelia Smith ◽  
Joseph Fennell

Abstract Rice is consumed by nearly half of the global population and a significant source of energy and nutrients. However, rice consumption can also be a significant pathway of inorganic arsenic (iAs) exposure, thus requiring a risk–benefit assessment. This study assessed nutrient element (NE) densities in fifty-five rice types (white, brown and wild rice) marketed in the UK. Densities of essential NE were used to rank rice types in meeting daily NE targets under different consumption scenarios through a newly developed optimisation approach. Using iAs data from these rice types, we assessed the margin of exposure (MOE) for low (the UK) and high (Bangladesh) rice intake scenarios. Our results showed that brown and wild rice are significantly higher in many NE and significantly contribute to dietary reference value (DRV). Our modelling showed that switching to brown or wild rice could increase the intake of several essential nutrients by up to eight times that of white rice. Using rice consumption data for mid-to-high-consumption countries, we estimate that brown rice could provide 100 % adult DRV for Fe, Mg, Cr, P and Mo, and substantial contributions for Zn, Se and K. Our results show that the amount of rice primarily determines risk from iAs consumed rather than the type of rice. Therefore, switching from white to brown or wild rice could be beneficial, provided iAs concentration in rice is within the recommended limits.


2018 ◽  
Vol 15 (2) ◽  
Author(s):  
Nicole Colón Carrión ◽  
Chad Lozada Troche

Crops and stored grains are susceptible to pathogens that represent a threat to our health. The study presented herein compares the normal surface and endophytic fungal communities present on white and brown rice grains. One hundred grains of each rice variety was analyzed to determine their fungal contaminants and endophytes. Fungi were inoculated on SDA media, and purified in PDA media; morphological characterization was performed followed by amplification of the ITS region using PCR for all fungal isolates. Statistical analysis indicated significant differences between medium brown rice compared to white rice for surface and endophytic communities (p-value £ 0.05). In addition, a higher fungal diversity was found on brown rice grains compared to white rice. This variation may be due to differences in the processing methods used for each rice grain type. BLAST analysis revealed the presence of toxigenic strains of Aspergillus flavus, A.oryzae, Penicillium verrucosum, and P. viridicatum. The study of fungal growth in rice grains can contribute to the minimization of mycotoxin production by its prevention and control; therefore, decreasing crop contamination and human exposure to their metabolites. KEYWORDS: Fungi; Rice; Fungal contaminants; Fungal endophytes


Sign in / Sign up

Export Citation Format

Share Document